Lista delle pubblicazioni

Circa 200 lavori tra articoli su riviste scientifiche e atti di conferenze.
Una lista completa ed aggiornata è presente sugli archivi online:

NASA Ads Archive

Scopus Database


Lavori principali:


An anomalous positron abundance in cosmic rays with energies 1.5-100 GeVPamela collaboration2009Nature 458 (7238), pp. 607-609

PAMELA measurements of cosmic-ray proton and helium spectraPamela collaboration.2011Science 332 (6025), pp. 69-72
Space travel: Dual origins of light flashes seen in spaceSileye collaboration2003Nature 422 (6933), pp. 680



New measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiationPamela collaboration2009Physical Review Letters102 (5), art. no. 051101
The discovery of geomagnetically trapped cosmic-ray antiprotonsPamela collaboration.2011Astrophysical Journal Letters 737 (2), art. no. L29
The cosmic-ray electron and positron spectra measured at 1 AU during solar minimum activityCaprice collaboration2000Astrophysical Journal Letters 532 (1 PART 1), pp. 653-669
The cosmic-ray antiproton flux between 3 and 49 GeVCaprice collaboration2001Astrophysical Journal Letters 561 (2 PART 1), pp. 787-799


Refereed Journal Papers10 most relevant Papers[1] Adriani, O., et al. Time Dependence of the Electron and Positron Components of the Cosmic Radiation Measured by
the PAMELA Experiment between July 2006 and December 2015
. Physical Review Letters, 116(24):241105, June 2016.
doi:10.1103/PhysRevLett.116.241105.
[2] Adriani, O., et al.
New Upper Limit on Strange Quark Matter Abundance in Cosmic Rays with the PAMELA Space
Experiment
. Physical Review Letters, 115(11):111101, September 2015. doi:10.1103/PhysRevLett.115.111101.
[3] Adriani, O., et al.
Measurement of Boron and Carbon Fluxes in Cosmic Rays with the PAMELA Experiment. ApJ, 791:93,August 2014. doi:10.1088/0004-637X/791/2/93.
[4] Adriani, O., et al.
The pamela mission: Heralding a new era in precision cosmic ray physics. Physics Reports, 544(4):323
– 370,
2014. ISSN 0370-1573. doi:http://dx.doi.org/10.1016/j.physrep.2014.06.003. The PAMELA Mission: Heralding a new era in
precision cosmic ray physics.
[5] Adriani, O., et al.
Cosmic-Ray Positron Energy Spectrum Measured by PAMELA. Physical Review Letters, 111(8):081102,August 2013. doi:10.1103/PhysRevLett.111.081102.
[6] Adriani, O., et al.
Cosmic-Ray Electron Flux Measured by the PAMELA Experiment between 1 and 625 GeV. Physical
Review Letters
, 106(20):201101, May 2011. doi:10.1103/PhysRevLett.106.201101.
[7] Adriani, O., et al.
PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra. Science, 332:69–, April 2011.
doi:10.1126/science.1199172.
[8] Adriani, O., et al.
PAMELA Results on the Cosmic-Ray Antiproton Flux from 60 MeV to 180 GeV in Kinetic Energy.Physical Review Letters, 105(12):121101, September 2010. doi:10.1103/PhysRevLett.105.121101.
[9] Adriani, O., et al.
An anomalous positron abundance in cosmic rays with energies 1.5-100GeV. Nature, 458:607–609, April
2009
. doi:10.1038/nature07942.
[10] Casolino, M., et al.
Space travel: Dual origins of light flashes seen in space. Nature, 422(6933):680–680, Apr 2003. ISSN
0028-0836. doi:10.1038/422680a.

Full listPAMELA collaboration: 60 authors in alphabetical order
JEM-EUSO collaboration: 150 authors in alphabetical order
[1] Abdellaoui, G., et al. Cosmic ray oriented performance studies for the JEM-EUSO first level trigger. NUCLEAR
INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS
DETECTORS AND ASSOCIATED EQUIPMENT
, 866:150{163, SEP 11 2017. ISSN 0168-9002. doi:
10.1016/j.nima.2017.05.043.
[2] Abdellaoui, G., et al.
Meteor studies in the framework of the JEM-EUSO program. PLANETARY AND SPACE SCIENCE,
143(SI):245{255,
SEP 1 2017. ISSN 0032-0633. doi:10.1016/j.pss.2016.12.001. 9th Meteoroids Conference, ESTEC, NETHERLANDS,
JUN 06-10, 2016.
[3] Adriani, O., et al.
Ten years of PAMELA in space. RIVISTA DEL NUOVO CIMENTO, 40(10):473{522, OCT 2017. ISSN
0393-697X. doi:10.1393/ncr/i2017-10140-x.
[4] Bruno, A., et al.
Geomagnetically trapped, albedo and solar energetic particles: Trajectory analysis and flux
reconstruction with PAMELA
. ADVANCES IN SPACE RESEARCH, 60(4):788{795, AUG 15 2017. ISSN 0273-1177.
doi:10.1016/j.asr.2016.06.042.
[5] Bogomolov, E. A., et al.
Spectra of solar neutrons with energies of 10 - 1000 MeV in the PAMELA experiment in the
flare events of 2006 - 2015
. Bulletin of the Russian Academy of Sciences, Physics, 81:132{135, February 2017. doi:
10.3103/S1062873817020113.
[6] Galper, A. M., et al.
The PAMELA experiment: a decade of Cosmic Ray Physics in space. In Journal of Physics Conference
Series
, volume 798 of Journal of Physics Conference Series, page 012033. January 2017. doi:10.1088/1742-6596/798/1/012033.
[7] Koldobskiy, S. A., et al.
Solar modulation of cosmic deuteron fluxes in the PAMELA experiment. Bulletin of the Russian
Academy of Sciences, Physics
, 81:151{153, February 2017. doi:10.3103/S106287381702023X.
[8] Mayorov, A. G., et al.
Solar modulation of galactic cosmic rays during 2006-2015 based on PAMELA and ARINA data.
In
Journal of Physics Conference Series, volume 798 of Journal of Physics Conference Series, page 012042. January 2017.
doi:10.1088/1742-6596/798/1/012042.
[9] Mikhailov, V. V., et al.
Modulation of electrons and positrons in 2006 - 2015 in the PAMELA experiment. Bulletin of
the Russian Academy of Sciences, Physics
, 81:154{156, February 2017. doi:10.3103/S1062873817020277.
[10] Mikhailov, V. V., et al.
Secondary positrons and electrons in near-Earth space in the PAMELA experiment. Bulletin of
the Russian Academy of Sciences, Physics
, 81:203{205, February 2017. doi:10.3103/S1062873817020289.1
[11] Mikhailov, V. V., et al. Sharp increasing of positron to electron fluxes ratio below 2 GV measured by the PAMELA. InJournal of Physics Conference Series, volume 798 of Journal of Physics Conference Series, page 012019. January 2017.
doi:10.1088/1742-6596/798/1/012019.
[12] Narici, L., et al.
Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station
in high latitude radiation environment, , 7: 1644, 2017
. Nature Physics Reports, 7:1644, May 2017.
[13] Adriani, O., et al.
Measurements of Cosmic-Ray Hydrogen and Helium Isotopes with the PAMELA Experiment. ApJ,
818:68,
February 2016. doi:10.3847/0004-637X/818/1/68.
[14] Adriani, O., et al.
PAMELA’s measurements of geomagnetic cutoff variations during the 14 December 2006 storm. Space
Weather
, 14:210{220, March 2016. doi:10.1002/2016SW001364.
[15] Adriani, O., et al.
Time Dependence of the Electron and Positron Components of the Cosmic Radiation Measured by
the PAMELA Experiment between July 2006 and December 2015
. Physical Review Letters, 116(24):241105, June 2016.
doi:10.1103/PhysRevLett.116.241105.
[16] Bruno, A., et al.
The May 17, 2012 solar event: back-tracing analysis and flux reconstruction with PAMELA. In Journal
of Physics Conference Series
, volume 675 of Journal of Physics Conference Series, page 032006. February 2016. doi:
10.1088/1742-6596/675/3/032006.
[17] Fenu, F., et al.
Preliminary analysis of EUSO-TA data. Journal of Physics Conference Series, 718(5):052011, May 2016.
doi:10.1088/1742-6596/718/5/052011.
[18] Fujii, T., et al.
Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope. Astroparticle
Physics
, 74:64{72, February 2016. doi:10.1016/j.astropartphys.2015.10.006.
[19] Karelin, A. V., et al.
The measurement of the dipole anisotropy of protons and helium cosmic rays with the PAMELA
experiment
. In Journal of Physics Conference Series, volume 675 of Journal of Physics Conference Series, page 032005.February 2016. doi:10.1088/1742-6596/675/3/032005.
[20] Menn, W., et al.
H, He, Li and Be Isotopes in the PAMELA-Experiment. In Journal of Physics Conference Series, volume
675 of
Journal of Physics Conference Series, page 032001. February 2016. doi:10.1088/1742-6596/675/3/032001.
[21] Mikhailov, V. V., et al.
Trapped positrons observed by PAMELA experiment. In Journal of Physics Conference Series,
volume 675 of
Journal of Physics Conference Series, page 032003. February 2016. doi:10.1088/1742-6596/675/3/032003.
[22] Adams, J. H., et al.
Calibration aspects of the JEM-EUSO mission. Experimental Astronomy, 40:91{116, November 2015.
doi:10.1007/s10686-015-9453-2.
[23] Adams, J. H., et al.
Ground-based tests of JEM-EUSO components at the Telescope Array site, "EUSO-TA". Experimental
Astronomy
, 40:301{314, November 2015. doi:10.1007/s10686-015-9441-6.
[24] Adams, J. H., et al.
JEM-EUSO: Meteor and nuclearite observations. Experimental Astronomy, 40:253{279, November
2015
. doi:10.1007/s10686-014-9375-4.
[25] Adams, J. H., et al.
JEM-EUSO observational technique and exposure. Experimental Astronomy, 40:117{134, November
2015
. doi:10.1007/s10686-014-9376-3.
[26] Adams, J. H., et al.
Performances of JEM-EUSO: angular reconstruction. The JEM-EUSO Collaboration. Experimental
Astronomy
, 40:153{177, November 2015. doi:10.1007/s10686-013-9371-0.
[27] Adams, J. H., et al.
Performances of JEM-EUSO: energy and X max reconstruction. Experimental Astronomy, 40:183{214,November 2015. doi:10.1007/s10686-014-9427-9.
[28] Adams, J. H., et al.
Science of atmospheric phenomena with JEM-EUSO. Experimental Astronomy, 40:239{251, November
2015
. doi:10.1007/s10686-014-9431-0.
[29] Adams, J. H., et al.
Space experiment TUS on board the Lomonosov satellite as pathfinder of JEM-EUSO. Experimental
Astronomy
, 40:315{326, November 2015. doi:10.1007/s10686-015-9465-y.
[30] Adams, J. H., et al.
The atmospheric monitoring system of the JEM-EUSO instrument. Experimental Astronomy, 40:45{
60,
November 2015. doi:10.1007/s10686-014-9378-1.
[31] Adams, J. H., et al.
The EUSO-Balloon pathfinder. Experimental Astronomy, 40:281{299, November 2015. doi:
10.1007/s10686-015-9467-9.
[32] Adams, J. H., et al.
The infrared camera onboard JEM-EUSO. Experimental Astronomy, 40:61{89, November 2015.
doi:10.1007/s10686-014-9402-5.
[33] Adams, J. H., et al.
The JEM-EUSO instrument. Experimental Astronomy, 40:19{44, November 2015. doi:10.1007/s10686-
014-9418-x.
[34] Adams, J. H., et al.
The JEM-EUSO mission: An introduction. Experimental Astronomy, 40:3{17, November 2015. doi:
10.1007/s10686-015-9482-x.
[35] Adams, J. H., et al.
The JEM-EUSO observation in cloudy conditions. Experimental Astronomy, 40:135{152, November
2015
. doi:10.1007/s10686-014-9377-2.
[36] Adams, J. H., et al.
Ultra high energy photons and neutrinos with JEM-EUSO. Experimental Astronomy, 40:215{233,November 2015. doi:10.1007/s10686-013-9353-2.
[37] Adriani, O., et al.
New Upper Limit on Strange Quark Matter Abundance in Cosmic Rays with the PAMELA Space
Experiment
. Physical Review Letters, 115(11):111101, September 2015. doi:10.1103/PhysRevLett.115.111101.
[38] Adriani, O., et al.
Pamela Measurements of Magnetospheric Effects On High Energy Solar Particles. ApJ, 801:L3, March
2015
. doi:10.1088/2041-8205/801/1/L3.
[39] Adriani, O., et al.
Reentrant albedo proton fluxes measured by the PAMELA experiment. Journal of Geophysical
Research (Space Physics)
, 120:3728{3738, May 2015. doi:10.1002/2015JA021019.
[40] Adriani, O., et al.
Search for Anisotropies in Cosmic-ray Positrons Detected By the PAMELA Experiment. ApJ, 811:21,September 2015. doi:10.1088/0004-637X/811/1/21.
[41] Adriani, O., et al.
Time Dependence of the e- Flux Measured by PAMELA during the July 2006-December 2009 Solar
Minimum.
ApJ, 810:142, September 2015. doi:10.1088/0004-637X/810/2/142.
[42] Adriani, O., et al.
Trapped Proton Fluxes at Low Earth Orbits Measured by the PAMELA Experiment. ApJ, 799:L4,January 2015. doi:10.1088/2041-8205/799/1/L4.2
[43] Ebisuzaki, T., et al. Demonstration designs for the remediation of space debris from the international space station. Acta
Astronautica
, 112:102 { 113, 2015. ISSN 0094-5765. doi:http://dx.doi.org/10.1016/j.actaastro.2015.03.004.
[44] Karelin, A., et al.
Detection of a change in the north-south ratio of count rates of particles of high-energy cosmic rays during
a change in the polarity of the magnetic field of the sun
. JETP Letters, 101(4):228{231, 2015. doi:10.1134/S0021364015040086.
[45] Karelin, A., et al.
Measurement of electron-positron spectrum in high-energy cosmic rays in the pamela experiment.Journal of Physics: Conference Series, 632(1), 2015. doi:10.1088/1742-6596/632/1/012014.
[46] Karelin, A., et al.
Measurement of the large-scale anisotropy of cosmic rays in the pamela experiment. JETP Letters,
101(5):295{298,
2015. doi:10.1134/S0021364015050136.
[47] Karelin, A., et al.
Measuring the spectra of high-energy cosmic-ray particles in the pamela experiment. Bulletin of the
Russian Academy of Sciences: Physics
, 79(3):289{293, 2015. doi:10.3103/S1062873815030260.
[48] Koldobskiy, S., et al.
Measuring the albedo deuteron flux in the pamela satellite experiment. Bulletin of the Russian
Academy of Sciences: Physics
, 79(3):294{297, 2015. doi:10.3103/S1062873815030326.
[49] Koldobskiy, S., et al.
Study of deuteron spectra under radiation belt with pamela instrument. Journal of Physics:
Conference Series
, 632(1), 2015. doi:10.1088/1742-6596/632/1/012060.
[50] Larsson, O., et al.
Measurements of heavy-ion anisotropy and dose rates in the russian section of the international
space station with the sileye-3/alteino detector
. Journal of Physics G: Nuclear and Particle Physics, 42(2), 2015. doi:
10.1088/0954-3899/42/2/025002.
[51] Malakhov, V., et al.
Time variations of proton flux in earth inner radiation belt during 23/24 solar cycles based on the
pamela and the arina data
. Journal of Physics: Conference Series, 632(1), 2015. doi:10.1088/1742-6596/632/1/012069.
[52] Mikhailov, V., et al.
Searching for anisotropy of positrons and electrons in the pamela experiment. Bulletin of the Russian
Academy of Sciences: Physics
, 79(3):298{301, 2015. doi:10.3103/S1062873815030375.
[53] Mori, N., et al.
Pamela measurements of the boron and carbon spectra. Journal of Physics: Conference Series, 632(1),2015. doi:10.1088/1742-6596/632/1/012017.
[54] Munini, R., et al.
Solar modulation of gcr electrons over the 23rd solar minimum with pamela. Journal of Physics:
Conference Series
, 632(1), 2015. doi:10.1088/1742-6596/632/1/012073.
[55] Narici, L., et al.
Radiation survey in the International Space Station. Journal of Space Weather and Space Climate,
5(27):A37,
December 2015. doi:10.1051/swsc/2015037.
[56] Panasyuk, M., et al.
The current status of orbital experiments for uhecr studies. Journal of Physics: Conference Series,
632(1),
2015. doi:10.1088/1742-6596/632/1/012097.
[57] Piotrowski, L., et al.
On-line and off-line data analysis for the euso-ta experiment. Nuclear Instruments and Methods
in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
, 773:164{171, 2015.
doi:10.1016/j.nima.2014.08.045.
[58] Piotrowski, L. W., et al.
The simulation of the lanfos-h food radiation contamination detector using geant4 package.Computer Physics Communications, 187(0):49 { 54, 2015. ISSN 0010-4655. doi:http://dx.doi.org/10.1016/j.cpc.2014.10.010.
[59] Prieto-Alfonso, H., et al.
Radiation hardness assurance for the jem-euso space mission. Reliability Engineering and System
Safety
, 133(0):137 { 145, 2015. ISSN 0951-8320. doi:http://dx.doi.org/10.1016/j.ress.2014.08.014.
[60] Usoskin, I. G., et al.
Force-field parameterization of the galactic cosmic ray spectrum: Validation for Forbush decreases.Advances in Space Research, 55:2940{2945, June 2015. doi:10.1016/j.asr.2015.03.009.
[61] Adriani, O., et al.
Measurement of Boron and Carbon Fluxes in Cosmic Rays with the PAMELA Experiment. ApJ, 791:93,August 2014. doi:10.1088/0004-637X/791/2/93.
[62] Adriani, O., et al.
The pamela mission: Heralding a new era in precision cosmic ray physics. Physics Reports, 544(4):323
{ 370,
2014. ISSN 0370-1573. doi:http://dx.doi.org/10.1016/j.physrep.2014.06.003. The PAMELA Mission: Heralding a new era in
precision cosmic ray physics.
[63] Berrilli, F., et al.
The relativistic solar particle event of May 17th, 2012 observed on board the International Space
Station
. Journal of Space Weather and Space Climate, 4(27):A16, May 2014. doi:10.1051/swsc/2014014.
[64] Bruno, A., et al.
Back-tracing and flux reconstruction for solar events with PAMELA. ArXiv e-prints, December 2014.
[65] Di Fino, L., et al.
Solar particle event detected by ALTEA on board the International Space Station. The March 7th,
2012 X5.4 flare
. Journal of Space Weather and Space Climate, 4(27):A19, May 2014. doi:10.1051/swsc/2014015.
[66] Formato, V., et al.
Measurement of hydrogen and helium isotopes flux in galactic cosmic rays with the
PAMELA experiment
. Nuclear Instruments and Methods in Physics Research A, 742:273{275, April 2014. doi:
10.1016/j.nima.2013.11.004.
[67] Karelin, A. V., et al.
New measurements of the energy spectra of high-energy cosmic-ray protons and helium nuclei with
the calorimeter in the PAMELA experiment
. Journal Of Experimental And Theoretical Physics, 119(3):448{452, SEP
2014
. ISSN 1063-7761. doi:10.1134/S1063776114080056.
[68] Larsson, O., et al.
Relative nuclear abundance from C to Fe and integrated flux inside the Russian part of the ISS with
the Sileye-3/Alteino experiment
. Journal of Physics G Nuclear Physics, 41(1):015202, January 2014. doi:10.1088/0954-
3899/41/1/015202.
[69] Martucci, M., et al.
Analysis on H spectral shape during the early 2012 SEPs with the PAMELA experiment. Nuclear
Instruments and Methods in Physics Research A
, 742:158{161, April 2014. doi:10.1016/j.nima.2013.11.078.
[70] von Ballmoos, P., et al.
A balloon-borne prototype for demonstrating the concept of JEM-EUSO. Advances in Space
Research
, 53:1544{1550, May 2014. doi:10.1016/j.asr.2013.11.049.
[71] Adams, J. H., et al.
An evaluation of the exposure in nadir observation of the JEM-EUSO mission. Astroparticle Physics,
44:76{90,
April 2013. doi:10.1016/j.astropartphys.2013.01.008.
[72] Adriani, O., et al.
Cosmic-Ray Positron Energy Spectrum Measured by PAMELA. Physical Review Letters, 111(8):081102,August 2013. doi:10.1103/PhysRevLett.111.081102.
[73] Adriani, O., et al.
Cosmic-Ray Positron Identification with the PAMELA experiment. ArXiv e-prints, June 2013.
[74] Adriani, O., et al.
Measurement of the flux of primary cosmic ray antiprotons with energies of 60 MeV to 350 GeV in
the PAMELA experiment
. JETP Letters, 96(10):621{627, JAN 2013. ISSN 0021-3640. doi:10.1134/S002136401222002X.3
[75] Adriani, O., et al. Measurement of the Isotopic Composition of Hydrogen and Helium Nuclei in Cosmic Rays with the
PAMELA Experiment
. ApJ, 770:2, June 2013. doi:10.1088/0004-637X/770/1/2.
[76] Adriani, O., et al.
Measurements of cosmic-ray proton and helium spectra with the PAMELA calorimeter. Advances in
Space Research
, 51:219{226, January 2013. doi:10.1016/j.asr.2012.09.029.
[77] Adriani, O., et al.
Time Dependence of the Proton Flux Measured by PAMELA during the 2006 July-2009 December
Solar Minimum
. ApJ, 765:91, March 2013. doi:10.1088/0004-637X/765/2/91.
[78] Bazilevskaya, G. A., et al.
Solar energetic particle events in 2006-2012 in the PAMELA experiment data. Journal of
Physics Conference Series
, 409(1):012188, February 2013. doi:10.1088/1742-6596/409/1/012188.
[79] Bruno, A., et al.
Precise Cosmic Rays Measurements With Pamela. Acta Polytechnica, 53:711, 2013.
[80] Bzheumikhova, M. A., et al.
Study of solar modulation of galactic cosmic rays with the PAMELA and ARINA spectrometers
in 2006-2012
. Journal of Physics Conference Series, 409(1):012194, February 2013. doi:10.1088/1742-6596/409/1/012194.
[81] Campana, D., et al.
Search for cosmic ray electron-positron anisotropies with the Pamela data. Journal of Physics
Conference Series
, 409(1):012055, February 2013. doi:10.1088/1742-6596/409/1/012055.
[82] Carbone, R., et al.
The PAMELA experiment: light-nuclei selection with stand-alone detectors. Journal of Physics
Conference Series
, 409(1):012038, February 2013. doi:10.1088/1742-6596/409/1/012038.
[83] Casolino, M.
The Pamela Cosmic Ray Space Observatory. International Journal of Modern Physics D, 22:1360002,September 2013. doi:10.1142/S021827181360002X.
[84] Karelin, A. V., et al.
A search algorithm for finding Cosmic-Ray anisotropy with the PAMELA calorimeter. Journal of
Physics Conference Series
, 409(1):012029, February 2013. doi:10.1088/1742-6596/409/1/012029.
[85] Karelin, A. V., et al.
North-south asymmetry for high-energy cosmic-ray electrons measured with the PAMELA
experiment
. Journal Of Experimental And Theoretical Physics, 117(2):268{273, AUG 2013. ISSN 1063-7761. doi:
10.1134/S1063776113100129.
[86] Karelin, A. V., et al.
Searching for cosmic ray anisotropy using the calorimeter in the PAMELA experiment. Bulletin of
the Russian Academy of Science, Phys.
, 77:1305{1308, November 2013. doi:10.3103/S1062873813110154.
[87] Koldobskiy, S. A., et al.
Galactic deuteron spectrum measured in PAMELA experiment. Journal of Physics Conference
Series
, 409(1):012040, February 2013. doi:10.1088/1742-6596/409/1/012040.
[88] Mayorov, A. G., et al.
Measurement of antiproton flux in primary cosmic radiation with PAMELA experiment. Journal
of Physics Conference Series
, 409(1):012056, February 2013. doi:10.1088/1742-6596/409/1/012056.
[89] Menn, W., et al.
The PAMELA space experiment. Advances in Space Research, 51:209{218, January 2013. doi:
10.1016/j.asr.2011.06.030.
[90] Mikhailov, V., et al.
Cosmic ray electron and positron spectra measured with PAMELA. Journal of Physics Conference
Series
, 409(1):012035, February 2013. doi:10.1088/1742-6596/409/1/012035.
[91] Mikhailov, V. V., et al.
Spectra of primary cosmic-ray positrons and electrons in the PAMELA experiment. Bulletin of
the Russian Academy of Science, Phys.
, 77:1309{1311, November 2013. doi:10.3103/S1062873813110221.
[92] Picozza, P., et al.
Cosmic Ray Study with the PAMELA Experiment. Journal of Physics Conference Series, 409(1):012003,February 2013. doi:10.1088/1742-6596/409/1/012003.
[93] Narici, L., et al.
Iron flux inside the international space station is measured to be lower than predicted. Radiation
Measurements
, 47(10):1030 { 1034, 2012. ISSN 1350-4487. doi:http://dx.doi.org/10.1016/j.radmeas.2012.07.006.
[94] Adriani, O., et al.
Cosmic-Ray Electron Flux Measured by the PAMELA Experiment between 1 and 625 GeV. Physical
Review Letters
, 106(20):201101, May 2011. doi:10.1103/PhysRevLett.106.201101.
[95] Adriani, O., et al.
Observations of the 2006 December 13 and 14 Solar Particle Events in the 80 MeV n-1-3 GeV n-1Range from Space with the PAMELA Detector. ApJ, 742:102, December 2011. doi:10.1088/0004-637X/742/2/102.
[96] Adriani, O., et al.
PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra. Science, 332:69{, April 2011.
doi:10.1126/science.1199172.
[97] Adriani, O., et al.
The Discovery of Geomagnetically Trapped Cosmic-ray Antiprotons. ApJ, 737:L29, August 2011. doi:
10.1088/2041-8205/737/2/L29.
[98] Borisov, S. V., et al.
High-energy cosmic ray proton spectrum. Bulletin Of The Lebedev Physics Institute, 38(3):68{75,MAR 2011. ISSN 1068-3356. doi:10.3103/S1068335611030031.
[99] Casolino, M., et al.
Detecting ultra-high energy cosmic rays from space with unprecedented acceptance: objectives
and design of the JEM-EUSO mission
. Astrophysics and Space Sciences Transactions, 7:477{482, October 2011. doi:
10.5194/astra-7-477-2011.
[100] Casolino, M., et al.
Measurements of He isotopic ratio in cosmic rays in the 100 MeV - 1 GeV range with the PAMELA
experiment
. Astrophysics and Space Sciences Transactions, 7:465{469, October 2011. doi:10.5194/astra-7-465-2011.
[101] Casolino, M., et al.
PAMELA recent results on galactic proton and helium. Nuclear Physics B Proceedings Supplements,
212:362{367,
March 2011. doi:10.1016/j.nuclphysbps.2011.03.049.
[102] de Simone, N., et al.
Latitudinal and radial gradients of galactic cosmic ray protons in the inner heliosphere - PAMELA
and Ulysses observations
. Astrophysics and Space Sciences Transactions, 7:425{434, September 2011. doi:10.5194/astra-7-
425-2011.
[103] Di Fino, L., et al.
Heavy-Ion Anisotropy Measured by ALTEA in the International Space Station. RADIATION
RESEARCH
, 176(3):397{406, SEP 2011. ISSN 0033-7587. doi:10.1667/RR2179.1.
[104] Karelin, A. V., et al.
Measuring fluxes of the protons and helium nuclei of high-energy cosmic rays. Bulletin of the
Russian Academy of Science, Phys.
, 75:327{330, March 2011. doi:10.3103/S1062873811030208.
[105] Kawasaki, Y., et al.
The focal surface of the JEM-EUSO instrument. Astrophysics and Space Sciences Transactions,
7:167{169,
May 2011. doi:10.5194/astra-7-167-2011.
[106] Larosa, M., et al.
Ion rates in the International Space Station during the December 2006 Solar Particle Event. Journal
of Physics G Nuclear Physics
, 38(9):095102, September 2011. doi:10.1088/0954-3899/38/9/095102.
[107] Mayorov, A. G., et al.
The search for antihelium in cosmic rays using data from the PAMELA experiment. Bulletin of
the Russian Academy of Science, Phys.
, 75:331{333, March 2011. doi:10.3103/S1062873811030282.4
[108] Mayorov, A. G., et al. Upper limit on the antihelium flux in primary cosmic rays. Soviet Journal of Experimental and
Theoretical Physics Letters
, 93:628{631, August 2011. doi:10.1134/S0021364011110087.
[109] Mocchiutti, E., et al.
PAMELA and electrons. Nuclear Instruments and Methods in Physics Research A, 630:28{35,February 2011. doi:10.1016/j.nima.2010.06.021.
[110] Adriani, O., et al.
A statistical procedure for the identification of positrons in the PAMELA experiment. Astroparticle
Physics
, 34:1{11, August 2010. doi:10.1016/j.astropartphys.2010.04.007.
[111] Adriani, O., et al.
PAMELA Results on the Cosmic-Ray Antiproton Flux from 60 MeV to 180 GeV in Kinetic Energy.Physical Review Letters, 105(12):121101, September 2010. doi:10.1103/PhysRevLett.105.121101.
[112] Borisov, S. V., et al.
Measurement of the high-energy electron and positron spectrum in the PAMELA experiment.Bulletin Of The Lebedev Physics Institute, 37(6):184{190, JUN 2010. ISSN 1068-3356. doi:10.3103/S1068335610060096. 3rd
All-Russian Youth School Seminar on Innovative Aspects of Basic Research on Urgent Problems of Physics, Lebedev Phys Inst, Moscow,
RUSSIA, OCT 25-30, 2009.
[113] Casolino, M., et al.
1000 days of PAMELA flight: Results and perspectives. Nuclear instruments & methods in physics
research section a-accelerators spectrometers detectors and associated equipment
, 623(1):419{421, NOV 1 2010. ISSN
0168-9002. doi:10.1016/j.nima.2010.03.022. 1st International Conference on Technology and Instrumentation in Particle Physics (TIPP
09), Tsukuba, JAPAN, MAR 12-17, 2009.
[114] Casolino, M. et al.
The data acquisition and handling system of JEM-EUSO experiment. Nuclear instruments & methods
in physics research section a-accelerators spectrometers detectors and associated equipment
, 623(1):516{518, NOV 1
2010
. ISSN 0168-9002. doi:10.1016/j.nima.2010.03.055. 1st International Conference on Technology and Instrumentation in Particle
Physics (TIPP 09), Tsukuba, JAPAN, MAR 12-17, 2009.
[115] Pugliese, M., et al.
Tests of shielding effectiveness of Kevlar and Nextel onboard the International Space Station and the
Foton-M3 capsule
. Radiation And Environmental Biophysics, 49(3):359{363, AUG 2010. ISSN 0301-634X. doi:10.1007/s00411-
010-0283-3.
[116] Zaconte, V., et al.
High energy radiation fluences in the ISS-USLab: Ion discrimination and particle abundances. Radiation
Measurements
, 45(2):168{172, FEB 2010. ISSN 1350-4487. doi:10.1016/j.radmeas.2010.01.020.
[117] Zaconte, V., et al.
The radiation environment in the ISS-USLab measured by ALTEA: Spectra and relative nuclear
abundances in the polar, equatorial and SAA regions
. Advances in Space Research, 46:797{799, September 2010. doi:
10.1016/j.asr.2010.02.032.
[118] Adriani, O., et al.
An anomalous positron abundance in cosmic rays with energies 1.5-100GeV. Nature, 458:607{609, April
2009
. doi:10.1038/nature07942.
[119] Adriani, O., et al.
Measurements of quasi-trapped electron and positron fluxes with PAMELA. In press on Journ.
Geophys. Research
, October 2009. doi:DOI:10.1029.
[120] Adriani, O., et al.
Measurements of quasi-trapped electron and positron fluxes with PAMELA. Journal Of Geophysical
Research-Space Physics
, 114, DEC 29 2009. ISSN 0148-0227. doi:10.1029/2009JA014660.
[121] Adriani, O., et al.
New Measurement of the Antiproton-to-Proton Flux Ratio up to 100 GeV in the Cosmic Radiation.Physical Review Letters, 102(5):051101{+, February 2009. doi:10.1103/PhysRevLett.102.051101.
[122] Adriani, O., et al.
Positrons and electrons in primary cosmic rays as measured in the PAMELA experiment. Bulletin of
the Russian Academy of Science, Phys.
, 73:568{570, June 2009. doi:10.3103/S1062873809050104.
[123] Adriani, O., et al.
Secondary electron and positron fluxes in the near-Earth space observed in the ARINA and PAMELA
experiments
. Bulletin of the Russian Academy of Science, Phys., 73:364{366, April 2009. doi:10.3103/S1062873809030253.
[124] Adriani, O., et al.
The PAMELA space mission. Nuclear Physics B Proceedings Supplements, 188:296{298, March 2009.
doi:10.1016/j.nuclphysbps.2009.02.070.
[125] Boezio, M., et al.
PAMELA and indirect dark matter searches. New Journal of Physics, 11(10):105023, October 2009.
doi:10.1088/1367-2630/11/10/105023.
[126] Casolino, M.
Investigation of radiation environment and Light Flash phenomenon on board manned space stations with
silicon detector telescopes
. Nuovo Cimento C Geophysics Space Physics C, 31:77{90, January 2008. doi:10.1393/ncc/i2008-
10282-8.
[127] Casolino, M., et al.
Detection of the high energy component of Jovian electrons in Low Earth Orbit with the PAMELA
experiment
. Advances in Space Research, 41:168{173, 2008. doi:10.1016/j.asr.2007.07.024.
[128] Casolino, M., et al.
Launch and commissioning of the PAMELA experiment on board the Resurs-DK1 satellite. Advances
in Space Research
, 41:2064{2070, 2008. doi:10.1016/j.asr.2007.06.062.
[129] Casolino, M., et al.
Launch of the space experiment PAMELA. Advances in Space Research, 42:455{466, August 2008.
doi:10.1016/j.asr.2007.07.023.
[130] Casolino, M., et al.
Magnetospheric and solar physics observations with the PAMELA experiment. Nuclear Instruments
and Methods in Physics Research A
, 588:243{246, April 2008. doi:10.1016/j.nima.2008.01.046.
[131] Casolino, M., et al.
The PAMELA experiment: A space-borne observatory for heliospheric phenomena. Advances in
Space Research
, 41:2043{2049, 2008. doi:10.1016/j.asr.2007.06.061.
[132] di Felice, V., et al.
PAMELA observational capabilities of Jovian electrons. Advances in Space Research, 41:2037{2042,2008. doi:10.1016/j.asr.2007.08.025.
[133] Leonov, A. A., et al.
Inner radiation belt source of helium and heavy hydrogen isotopes. Advances in Space Research,
41:86{91,
2008. doi:10.1016/j.asr.2006.09.009.
[134] Papini, P., et al.
In-flight performances of the PAMELA satellite experiment. Nuclear Instruments and Methods in
Physics Research A
, 588:259{266, April 2008. doi:10.1016/j.nima.2008.01.052.
[135] Pugliese, M., et al.
SPADA: A project to study the effectiveness of shielding materials in space. Nuovo Cimento C
Geophysics Space Physics C
, 31:91{97, January 2008. doi:10.1393/ncc/i2008-10283-7.
[136] Zaconte, V., et al.
ALTEA: The instrument calibration. Nuclear Instruments and Methods in Physics Research B,
266:2070{2078,
May 2008. doi:10.1016/j.nimb.2008.02.072.
[137] Adriani, O., et al.
The Pamela experiment ready for flight. Nuclear Instruments and Methods in Physics Research A,
572:471{473,
March 2007. doi:10.1016/j.nima.2006.10.316.5
[138] Badoni, D., et al. Silicon photomultipliers: On ground characterizations and modelling for use in front-end electronics
aimed to space-borne experiments
. Nuclear Instruments and Methods in Physics Research A, 572:402{403, March 2007.
doi:10.1016/j.nima.2006.10.224.
[139] Badoni, D., et al.
SiPM: Characterizations, modelling and VLSI front-end dedicated development. Nuovo cimento della
societa italiana di fisica c-geophysics and space physics
, 30(5):503{514, SEP-OCT 2007. ISSN 1124-1896. doi:10.1393/ncc/i2008-
10263-y. 1st Workshop on Photon Detection for High Energy Medical Space Applications, Perugia, ITALY, JUN 13-14, 2007.
[140] Casolino, M.
Cosmic ray investigations during the Marco Polo and Eneide missions with the Sileye-3/Alteino experiment.Microgravity Science And TechnoloGY, 19(5-6):49{53, 2007. ISSN 0938-0108. Meeting of Science on European Soyuz Missions
to the ISS, Toledo, SPAIN, JUN 27-30, 2006.
[141] Casolino, M. et al.
Data processing and distribution in the PAMELA experiment. Nuclear Instruments and Methods in
Physics Research A
, 572:351{352, March 2007. doi:10.1016/j.nima.2006.10.312.
[142] Casolino, M., et al.
The Altcriss project on board the International Space Station. Advances in Space Research, 40:1746{
1753,
2007. doi:10.1016/j.asr.2007.04.037.
[143] Casolino, M., et al.
The PAMELA storage and control unit. Nuclear Instruments and Methods in Physics Research A,
572:349{350,
March 2007. doi:10.1016/j.nima.2006.10.310.
[144] Casolino, M., et al.
The Sileye Altcriss experiment on board the International Space Station. Nuclear Instruments and
Methods in Physics Research A
, 572:235{236, March 2007. doi:10.1016/j.nima.2006.10.311.
[145] Casolino, M., et al.
The Sirad experiment on board the International Space Station. Nuclear Instruments and Methods
in Physics Research A
, 572:233{234, March 2007. doi:10.1016/j.nima.2006.10.313.
[146] Leonov, A., et al.
The measurements of light high-energy ions in NINA-2 experiment. Annales Geophysicae, 25:2029{2036,October 2007.
[147] Picozza, P., et al.
PAMELA A payload for antimatter matter exploration and light-nuclei astrophysics. Astroparticle
Physics
, 27:296{315, April 2007. doi:10.1016/j.astropartphys.2006.12.002.
[148] Sannita, W., et al.
Electrophysiological responses of the mouse retina to 12C ions. Neuroscience Letters, 416:231{235,January 2007.
[149] Sgrigna, V., et al.
First data from the EGLE experiment onboard the ISS. Microgravity Science And Technology, 19(5-
6):70{74,
2007. ISSN 0938-0108. Meeting of Science on European Soyuz Missions to the ISS, Toledo, SPAIN, JUN 27-30, 2006.
[150] Spillantini, P., et al.
Shielding from cosmic radiation for interplanetary missions: Active and passive methods. Radiation
Measurements
, 42(3):14{23, January 2007.
[151] Casolino, M.
Observations of the Light Flash phenomenon in space. Advances in Space Research, 38:1177{1181, 2006.
doi:10.1016/j.asr.2005.04.110.
[152] Casolino, M., et al.
Cosmic-ray observations of the heliosphere with the PAMELA experiment. Advances in Space
Research
, 37:1848{1852, 2006. doi:10.1016/j.asr.2005.06.035.
[153] Casolino, M., et al.
Detector response and calibration of the cosmic-ray detector of the Sileye-3/Alteino experiment.Advances in Space Research, 37:1691{1696, 2006. doi:10.1016/j.asr.2005.03.136.
[154] Casolino, M., et al.
Relative nuclear abundances inside ISS with Sileye-3/Alteino experiment. Advances in Space Research,
37:1685{1690,
2006. doi:10.1016/j.asr.2006.02.050.
[155] Casolino, M., et al.
The PAMELA Storage and Control Unit. Advances in Space Research, 37:1857{1861, 2006. doi:
10.1016/j.asr.2005.06.012.
[156] Casolino, M., et al.
YODA++: A proposal for a semi-automatic space mission control. Advances in Space Research,
37:1884{1888,
2006. doi:10.1016/j.asr.2005.06.033.
[157] Fino, L. D., et al.
ALTEA data handling. Advances in Space Research, 37:1710{1715, 2006. doi:10.1016/j.asr.2005.01.105.
[158] Scrimaglio, R., et al.
Analysis of Sileye-3/Alteino data with a neural network technique: Particle discrimination and
energy reconstruction
. Advances in Space Research, 37:1697{1703, 2006. doi:10.1016/j.asr.2005.12.004.
[159] Scrimaglio, R., et al.
Simulation of the ALTEA experiment on the International Space Station with the Geant 3.21
program
. Advances in Space Research, 37:1770{1776, 2006. doi:10.1016/j.asr.2004.11.029.
[160] Sparvoli, R., et al.
Space qualification tests of the PAMELA instrument. Advances in Space Research, 37:1841{1847, 2006.
doi:10.1016/j.asr.2005.05.100.
[161] Zaconte, V., et al.
ALTEA: flight model calibration at GSI. Advances in Space Research, 37:1704{1709, 2006. doi:
10.1016/j.asr.2005.02.028.
[162] Casolino, M., et al.
Shielding against Cosmic Radiation on Interplanetary Missions. In A. Wilson & B. Elmann-Larsen,
editor,
Topical Teams in Life & Physical Sciences: Towards New Research Applications, volume 1281 of ESA Special
Publication
, pages 184{199. June 2005.
[163] Leonov, A., et al.
Pitch angle distribution of trapped energetic protons and helium isotope nuclei measured along the
Resurs-01 No. 4 LEO satellite
. Annales Geophysicae, 23(9):2983{2987, November 2005. ISSN 0992-7689.
[164] Stozhkov, Y. I., et al.
About Separation of Hadron and Electromagnetic Cascades in the Pamela Calorimeter. International
Journal of Modern Physics A
, 20:6745{6748, 2005. doi:10.1142/S0217751X0502999X.
[165] Boezio, M., et al.
The space experiment PAMELA. Nuclear Physics B-Proceedings Supplements, 134:39{46, SEP 2004.
ISSN 0920-5632. doi:10.1016/j.nuclphysbps.2004.08.006. 2nd International Conference on Particle and Fundamental Physics in Space,
Washington, DC, DEC 10-12, 2003.
[166] Bongi, M., et al.
PAMELA: A Satellite Experiment for Antiparticles Measurement in Cosmic Rays. IEEE Transactions
on Nuclear Science
, 51:854{859, June 2004. doi:10.1109/TNS.2004.829504.
[167] Narici, L., et al.
The ALTEA/ALTEINO projects: studying functional effects of microgravity and cosmic radiation.Advances in Space Research, 33:1352{1357, 2004. doi:10.1016/j.asr.2003.09.052.
[168] Papini, P., et al.
High-Energy Deuteron Measurement with the CAPRICE98 Experiment. ApJ, 615:259{274, November
2004
. doi:10.1086/424027.
[169] Sannita, W. G., et al.
Effects of heavy ions on visual function and electrophysiology of rodents: the ALTEA-MICE project.Advances in Space Research, 33:1347{1351, 2004. doi:10.1016/j.asr.2003.11.007.6
[170] Bidoli, V., et al. Isotope composition of secondary hydrogen and helium above the atmosphere measured by the
instruments NINA and NINA-2
. Journal of Geophysical Research (Space Physics), 108:1211{+, May 2003. doi:
10.1029/2002JA009684.
[171] Boezio, M., et al.
Energy spectra of atmospheric muons measured with the CAPRICE98 balloon experiment. Phys. Rev. D,
67(7):072003{+,
April 2003. doi:10.1103/PhysRevD.67.072003.
[172] Boezio, M., et al.
The cosmic-ray proton and helium spectra measured with the CAPRICE98 balloon experiment.Astroparticle Physics, 19:583{604, August 2003. doi:10.1016/S0927-6505(02)00267-0.
[173] Casolino, M., et al.
Space travel: Dual origins of light flashes seen in space. Nature, 422(6933):680{680, Apr 2003. ISSN
0028-0836. doi:10.1038/422680a.
[174] Casolino, M., et al.
Study of the radiation environment on MIR space station with SILEYE-2 experiment. Advances in
Space Research
, 31:135{140, 2003. doi:10.1016/S0273-1177(02)00880-3.
[175] Furano, G., et al.
The small satellite NINA-MITA to study galactic and solar cosmic rays in low-altitude polar orbit.Advances in Space Research, 31:351{356, 2003. doi:10.1016/S0273-1177(02)00625-7.
[176] Narici, L., et al.
ALTEA: Anomalous long term effects in astronauts. A probe on the influence of cosmic radiation and
microgravity on the central nervous system during long flights
. Advances in Space Research, 31:141{146, 2003. doi:
10.1016/S0273-1177(02)00881-5.
[177] Adriani, O., et al.
The PAMELA experiment on satellite and its capability in cosmic rays measurements. Nuclear
Instruments and Methods in Physics Research A
, 478:114{118, February 2002. doi:10.1016/S0168-9002(01)01726-0.
[178] Ambriola, M., et al.
High-energy deuteron measurement with the CAPRICE98 experiment. Nuclear Physics BProceedings Supplements, 113:88{94, DEC 2002. ISSN 0920-5632. doi:10.1016/S0920-5632(02)01826-1. 1st International Conference
on Particle and Fundamental Physics in Space, ISOLA ELBA, ITALY, MAY 14-19, 2002.
[179] Avdeev, S., et al.
AST-Charge particle spectrometer for radiation measurements onboard International Space Station.Izvestiya Akademii Nauk Seriya Fizicheskaya, 66(11):1670{1672, NOV 2002. ISSN 1026-3489. 27th National Conference on
Cosmic Rays, HAMBURG, GERMANY, AUG, 2001.
[180] Avdeev, S., et al.
Eye light flashes on the mir space station. Acta Astronautica, 50:511{525, April 2002.
[181] Bakaldin, A., et al.
Geomagnetically trapped light isotopes observed with the detector NINA. Journal of Geophysical
Research (Space Physics)
, 107:1171{+, August 2002. doi:10.1029/2001JA900172.
[182] Bakaldin, A., et al.
Light Isotope Abundances in Solar Energetic Particles Measured by the Space Instrument NINA.
ApJ, 577:513{523,
September 2002. doi:10.1086/342128.
[183] Bidoli, V., et al.
Energy spectrum of secondary protons above the atmosphere measured by the instruments NINA and
NINA-2
. Annales Geophysicae, 20:1693{1697, October 2002.
[184] Casolino, M.
Low Energy Solar and Galactic Cosmic Rays at 1 AU. International Journal of Modern Physics A, 17:1685{
1694,
2002. doi:10.1142/S0217751X02011187.
[185] Casolino, M.
Radiation in space: Causes, measures and countermeasures. Frascati Physics Series XXIV, XXIV:195{216,2002.
[186] Casolino, M., et al.
The sileye-3/alteino experiment for the study of light flashes, radiation environment and astronaut
brain activity on board the international space station
. Journ. Rad. Res., 43:S47+{, 2002.
[187] Casolino, M., et al.
The Sileye-3/Alteino experiment on board the International Space Station. Nuclear Physics BProceedings Supplements, 113:71{78, DEC 2002. ISSN 0920-5632. doi:10.1016/S0920-5632(02)01824-8. 1st International Conference
on Particle and Fundamental Physics in Space, ISOLA ELBA, ITALY, MAY 14-19, 2002.
[188] Aloisio, A., et al.
The ARGO-YBJ experiment in Tibet. Nuovo cimento della societa italiana di fisica c-geophysics and
space physics
, 24(4-5):739{744, AUG-OCT 2001. ISSN 1124-1896. Chacaltaya Meeting on Cosmic Ray Physics, LA PZ, BOLIVIA,
JUL 23-27, 2000.
[189] Barbiellini, G., et al.
CAPRICE98: a balloon-borne magnetic spectrometer equipped with a gas RICH and a silicon
calorimeter to study cosmic rays
. Nuclear Instruments and Methods in Physics Research A, 461:269{271, April 2001.
doi:10.1016/S0168-9002(00)01222-5.
[190] Bergstr¨om, D., et al.
Performance of the CAPRICE98 balloon-borne gas-RICH detector. Nuclear Instruments and
Methods in Physics Research A
, 463:161{174, May 2001. doi:10.1016/S0168-9002(01)00202-9.
[191] Bidoli, V., et al.
Determining the characteristics of cosmic-radiation nuclei in the Sileye experiment on board the
Mir orbital station
. Instruments And Experimental Techniques, 44(5):623{625, SEP-OCT 2001. ISSN 0020-4412. doi:
10.1023/A:1012389322155.
[192] Bidoli, V., et al.
In-flight performance of SilEye-2 experiment and cosmic ray abundances inside the Mir space station.Journal of Physics G Nuclear Physics, 27:2051{2064, October 2001. doi:10.1088/0954-3899/27/10/307.
[193] Bidoli, V., et al.
In-Orbit Performance of the Space Telescope NINA and Galactic Cosmic-Ray Flux Measurements.
ApJS, 132:365{375,
February 2001. doi:10.1086/318955.
[194] Boezio, M., et al.
Measurements of cosmic-ray electrons and positrons by the Wizard/CAPRICE collaboration. Advances
in Space Research
, 27:669{674, 2001. doi:10.1016/S0273-1177(01)00108-9.
[195] Boezio, M., et al.
The Cosmic-Ray Antiproton Flux between 3 and 49 GeV. ApJ, 561:787{799, November 2001. doi:
10.1086/323366.
[196] Bonvicini, V., et al.
The PAMELA experiment in space. Nuclear Instruments and Methods in Physics Research A,
461:262{268,
April 2001. doi:10.1016/S0168-9002(00)01221-3.
[197] Circella, M., et al.
Measurements of primary cosmic-ray hydrogen and helium by the WiZard collaboration. Advances
in Space Research
, 27:755{760, 2001. doi:10.1016/S0273-1177(01)00117-X.
[198] Narici, L., et al.
The altea facility on the international space station. Physica Medica, 17:255+{, 2001.
[199] Sparvoli, R., et al.
A solid-state detector as the EPD aboard the Solar Orbiter. In B. Battrick, H. Sawaya-Lacoste, E. Marsch,
V. Martinez Pillet, B. Fleck, & R. Marsden, editor,
Solar encounter. Proceedings of the First Solar Orbiter Workshop, volume
493 of
ESA Special Publication, pages 371{375. September 2001.
[200] Spillantini, P., et al.
Radiation shielding of astronauts in interplanetary flights: the cream surveyor to mars and the
magnetic lens system for a spaceship
. Physica Medica, 17:249{254, 2001.7
[201] Bergstr¨om, D., et al. First Mass-resolved Measurement of High-Energy Cosmic-Ray Antiprotons. ApJ, 534:L177{L180, May
2000
. doi:10.1086/312665.
[202] Bidoli, V., et al.
Study of Cosmic Rays and Light Flashes on Board Space Station MIR: The Sileye Experiment. Advances
in Space Research
, 25:2075{2079, 2000. doi:10.1016/S0273-1177(99)01017-0.
[203] Boezio, M., et al.
Measurement of the flux of atmospheric muons with the caprice94 apparatus. Phys. Rev. D, 62(3):032007,Jul 2000. doi:10.1103/PhysRevD.62.032007.
[204] Boezio, M., et al.
The Cosmic-Ray Electron and Positron Spectra Measured at 1 AU during Solar Minimum Activity.
ApJ, 532:653{669,
March 2000. doi:10.1086/308545.
[205] Circella, M., et al.
The WiZard Collaboration cosmic ray muon measurements in the atmosphere. Nuclear Physics BProceedings Supplements, 85:355{360, MAY 2000. ISSN 0920-5632. doi:10.1016/S0920-5632(00)00529-6. 6th Topical Seminar on
Neutrino and Astroparticle Physics, PISA, ITALY, MAY 17-21, 1999.
[206] Sparvoli, R., et al.
Launch in orbit of the telescope NINA for cosmic ray observations: preliminary results. Nuclear
Physics B-Proceedings Supplements
, 85:28{33, MAY 2000. ISSN 0920-5632. doi:10.1016/S0920-5632(00)00478-3. 6th Topical
Seminar on Neutrino and Astroparticle Physics, PISA, ITALY, MAY 17-21, 1999.
[207] Ambriola, M., et al.
CAPRICE98: A balloon borne magnetic spectrometer to study cosmic ray antimatter and composition
at different atmospheric depths
. Nuclear Physics B-Proceedings Supplements, 78:32{37, AUG 1999. ISSN 0920-5632. doi:
10.1016/S0920-5632(99)00519-8. 6th International Conference on Advanced Technology and Particle Physics, VILLA OLMO, ITALY,
OCT 05-09, 1998.
[208] Bidoli, V., et al.
ALTEA: A Facility to Study the Interaction of Brain Functionality and Visual System with Cosmic
Radiation on ISS
. In A. Wilson, editor, Utilisation of the International Space station 2, volume 433 of ESA Special
Publication
, pages 505{+. February 1999.
[209] Bidoli, V., et al.
The space telescope NINA: results of a beam test calibration. Nuclear Instruments and Methods in
Physics Research A
, 424:414{424, March 1999. doi:10.1016/S0168-9002(98)01196-6.
[210] Boezio, M., et al.
New Measurement of the Flux of Atmospheric Muons. Physical Review Letters, 82:4757{4760, June
1999
. doi:10.1103/PhysRevLett.82.4757.
[211] Boezio, M., et al.
The Cosmic-Ray Proton and Helium Spectra between 0.4 and 200 GV. ApJ, 518:457{472, June 1999.
doi:10.1086/307251.
[212] Kremer, J., et al.
Measurements of Ground-Level Muons at Two Geomagnetic Locations. Physical Review Letters,
83:4241{4244,
November 1999. doi:10.1103/PhysRevLett.83.4241.
[213] Bakaldin, A., et al.
Experiment NINA: investigation of low energy nuclear fluxes in the near-Earth space. Astroparticle
Physics
, 8:109{121, December 1997. doi:10.1016/S0927-6505(97)00047-9.
[214] Barbiellini, G., et al.
A fine-grained silicon detector for high-energy gamma-ray astrophysics. Nuovo Cimento C Geophysics
Space Physics C
, 20:775{781, October 1997.
[215] Bellotti, R., et al.
Study of the combined particle identification capability of a transition radiation detector and a silicon
imaging calorimeter during the TS93 balloon flight
. Astroparticle Physics, 7:219{230, August 1997. doi:10.1016/S0927-
6505(97)00027-3.
[216] Bidoli, V., et al.
Experimental beam test of the SilEye2 apparatus. Nuclear Instruments and Methods in Physics Research
A
, 399:477{488, February 1997. doi:10.1016/S0168-9002(97)00938-8.
[217] Boezio, M., et al.
The Cosmic-Ray Antiproton Flux between 0.62 and 3.19 G eV Measured Near Solar Minimum Activity.
ApJ, 487:415{+,
September 1997. doi:10.1086/304593.
[218] Casolino, M., et al.
Light flash observation in space: Experiment ELFO. Nuovo Cimento D Serie, 19:1601{+, October 1997.
[219] Aversa, F., et al.
Identification of cosmic ray electrons and positrons by neural networks. Astroparticle Physics, 5:111{117,August 1996. doi:10.1016/0927-6505(96)00009-6.
[220] Barbiellini, G., et al.
Performance of the CAPRICE RICH detector during the 1994 balloon flight. Nuclear Instruments
and Methods in Physics Research A
, 371:169{173, February 1996. doi:10.1016/0168-9002(95)01152-8.
[221] Barbiellini, G., et al.
The cosmic ray positron to electron ratio in the energy range 0.85 to 14GeV. A&A, 309:L15{L18, May
1996
.
[222] Bocciolini, M., et al.
The WiZard/CAPRICE silicon-tungsten calorimeter. Nuclear Instruments and Methods in Physics
Research A
, 370:403{412, February 1996. doi:10.1016/0168-9002(95)00841-1.
[223] Borisyuk, R., et al.
Gamma-ray energy determination using neural network algorithms for an imaging silicon calorimeter.Nuclear Instruments and Methods in Physics Research A, 381:512{516, February 1996. doi:10.1016/S0168-9002(96)00727-9.
[224] Golden, R. L., et al.
Measurement of the Positron to Electron Ratio in Cosmic Rays above 5 GeV. ApJ, 457:L103+,February 1996. doi:10.1086/309896.
[225] Aversa, F., et al.
WiZard Si-W imaging calorimeter: a preliminary study on its particle identification capability during
a balloon flight in 1993
. Nuclear Instruments and Methods in Physics Research A, 360:17{21, February 1995. doi:
10.1016/0168-9002(94)01217-2.
[226] Barbiellini, g., et al.
A Wide-Aperture Telescope For High-Energy Gamma-Rays Detection. Nuclear Physics B, (43):253{
256,
JUN 1995. ISSN 0550-3213. doi:10.1016/0920-5632(95)00484-Q. Workshop on Trends in Astroparticle Physics, STOCKHOLM,
SWEDEN, SEP 22-25, 1994.
[227] Barbiellini, G., et al.
NINA: a lightweight silicon strip detector for cosmic ray research in space. In P. Y. Bely &
J. B. Breckinridge, editor,
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 2478 ofSociety of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pages 239{249. June 1995.
[228] Barbiellini, G., et al.
The GILDA mission: a new technique for a gamma-ray telescope in the energy range 20 MeV-100 GeV.Nuclear Instruments and Methods in Physics Research A, 354:547{552, February 1995. doi:10.1016/0168-9002(94)01061-7.
[229] Candusso, M., et al.
Neural networks with stochastic preprocessing for particle recognition in cosmic ray experiments.Nuclear Instruments and Methods in Physics Research A, 360:371{374, February 1995. doi:10.1016/0168-9002(94)01620-8.
[230] Casolino, M. et al.
A cellular automaton to filter events in a high energy physics discrete calorimeter. Nuclear Instruments
and Methods in Physics Research A
, 364:516{523, February 1995. doi:10.1016/0168-9002(95)00520-X.8
[231] Basti, G., et al. Using backpropagation to reckon with discrete and continuous signals from a silicon calorimeter. In
S. K. Rogers & D. W. Ruck, editor,
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume
2243 of
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pages 496{507. March 1994.
[232] Basti, G., et al.
Automatic redefinition of the fuzzy membership function to deal with high fluctuating phenomena in
neural nets
. In D. W. Ruck, editor, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume
1966 of
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pages 241{254. August 1993.
[233] Bocciolini, m., et al.
Silicon Calorimeter For Cosmic Antimatter Search. Nuclear Physics B, (32):77{82, MAY 1993. ISSN
0550-3213. doi:10.1016/0920-5632(93)90011-T. 3rd international conf on advanced technology and particle physics, como, italy, jun
22-26, 1992.
9