Circa 200 lavori tra articoli su riviste scientifiche e atti di conferenze.
Una lista completa ed aggiornata è presente sugli archivi online:
NASA Ads Archive
Scopus Database
Lavori principali:
Una lista completa ed aggiornata è presente sugli archivi online:
NASA Ads Archive
Scopus Database
Lavori principali:
An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV | Pamela collaboration | 2009 | Nature 458 (7238), pp. 607-609 |
PAMELA measurements of cosmic-ray proton and helium spectra | Pamela collaboration. | 2011 | Science 332 (6025), pp. 69-72 |
Space travel: Dual origins of light flashes seen in space | Sileye collaboration | 2003 | Nature 422 (6933), pp. 680 |
New measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation | Pamela collaboration | 2009 | Physical Review Letters102 (5), art. no. 051101 |
The discovery of geomagnetically trapped cosmic-ray antiprotons | Pamela collaboration. | 2011 | Astrophysical Journal Letters 737 (2), art. no. L29 |
The cosmic-ray electron and positron spectra measured at 1 AU during solar minimum activity | Caprice collaboration | 2000 | Astrophysical Journal Letters 532 (1 PART 1), pp. 653-669 |
The cosmic-ray antiproton flux between 3 and 49 GeV | Caprice collaboration | 2001 | Astrophysical Journal Letters 561 (2 PART 1), pp. 787-799 |
Refereed Journal Papers10 most relevant Papers[1] Adriani, O., et al. Time Dependence of the Electron and Positron Components of the Cosmic Radiation Measured by
the PAMELA Experiment between July 2006 and December 2015. Physical Review Letters, 116(24):241105, June 2016.
doi:10.1103/PhysRevLett.116.241105.
[2] Adriani, O., et al. New Upper Limit on Strange Quark Matter Abundance in Cosmic Rays with the PAMELA Space
Experiment. Physical Review Letters, 115(11):111101, September 2015. doi:10.1103/PhysRevLett.115.111101.
[3] Adriani, O., et al. Measurement of Boron and Carbon Fluxes in Cosmic Rays with the PAMELA Experiment. ApJ, 791:93,August 2014. doi:10.1088/0004-637X/791/2/93.
[4] Adriani, O., et al. The pamela mission: Heralding a new era in precision cosmic ray physics. Physics Reports, 544(4):323
– 370, 2014. ISSN 0370-1573. doi:http://dx.doi.org/10.1016/j.physrep.2014.06.003. The PAMELA Mission: Heralding a new era in
precision cosmic ray physics.
[5] Adriani, O., et al. Cosmic-Ray Positron Energy Spectrum Measured by PAMELA. Physical Review Letters, 111(8):081102,August 2013. doi:10.1103/PhysRevLett.111.081102.
[6] Adriani, O., et al. Cosmic-Ray Electron Flux Measured by the PAMELA Experiment between 1 and 625 GeV. Physical
Review Letters, 106(20):201101, May 2011. doi:10.1103/PhysRevLett.106.201101.
[7] Adriani, O., et al. PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra. Science, 332:69–, April 2011.
doi:10.1126/science.1199172.
[8] Adriani, O., et al. PAMELA Results on the Cosmic-Ray Antiproton Flux from 60 MeV to 180 GeV in Kinetic Energy.Physical Review Letters, 105(12):121101, September 2010. doi:10.1103/PhysRevLett.105.121101.
[9] Adriani, O., et al. An anomalous positron abundance in cosmic rays with energies 1.5-100GeV. Nature, 458:607–609, April
2009. doi:10.1038/nature07942.
[10] Casolino, M., et al. Space travel: Dual origins of light flashes seen in space. Nature, 422(6933):680–680, Apr 2003. ISSN
0028-0836. doi:10.1038/422680a.
Full listPAMELA collaboration: 60 authors in alphabetical order
JEM-EUSO collaboration: 150 authors in alphabetical order[1] Abdellaoui, G., et al. Cosmic ray oriented performance studies for the JEM-EUSO first level trigger. NUCLEAR
INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS
DETECTORS AND ASSOCIATED EQUIPMENT, 866:150{163, SEP 11 2017. ISSN 0168-9002. doi:
10.1016/j.nima.2017.05.043.
[2] Abdellaoui, G., et al. Meteor studies in the framework of the JEM-EUSO program. PLANETARY AND SPACE SCIENCE,
143(SI):245{255, SEP 1 2017. ISSN 0032-0633. doi:10.1016/j.pss.2016.12.001. 9th Meteoroids Conference, ESTEC, NETHERLANDS,
JUN 06-10, 2016.
[3] Adriani, O., et al. Ten years of PAMELA in space. RIVISTA DEL NUOVO CIMENTO, 40(10):473{522, OCT 2017. ISSN
0393-697X. doi:10.1393/ncr/i2017-10140-x.
[4] Bruno, A., et al. Geomagnetically trapped, albedo and solar energetic particles: Trajectory analysis and flux
reconstruction with PAMELA. ADVANCES IN SPACE RESEARCH, 60(4):788{795, AUG 15 2017. ISSN 0273-1177.
doi:10.1016/j.asr.2016.06.042.
[5] Bogomolov, E. A., et al. Spectra of solar neutrons with energies of 10 - 1000 MeV in the PAMELA experiment in the
flare events of 2006 - 2015. Bulletin of the Russian Academy of Sciences, Physics, 81:132{135, February 2017. doi:
10.3103/S1062873817020113.
[6] Galper, A. M., et al. The PAMELA experiment: a decade of Cosmic Ray Physics in space. In Journal of Physics Conference
Series, volume 798 of Journal of Physics Conference Series, page 012033. January 2017. doi:10.1088/1742-6596/798/1/012033.
[7] Koldobskiy, S. A., et al. Solar modulation of cosmic deuteron fluxes in the PAMELA experiment. Bulletin of the Russian
Academy of Sciences, Physics, 81:151{153, February 2017. doi:10.3103/S106287381702023X.
[8] Mayorov, A. G., et al. Solar modulation of galactic cosmic rays during 2006-2015 based on PAMELA and ARINA data.
In Journal of Physics Conference Series, volume 798 of Journal of Physics Conference Series, page 012042. January 2017.
doi:10.1088/1742-6596/798/1/012042.
[9] Mikhailov, V. V., et al. Modulation of electrons and positrons in 2006 - 2015 in the PAMELA experiment. Bulletin of
the Russian Academy of Sciences, Physics, 81:154{156, February 2017. doi:10.3103/S1062873817020277.
[10] Mikhailov, V. V., et al. Secondary positrons and electrons in near-Earth space in the PAMELA experiment. Bulletin of
the Russian Academy of Sciences, Physics, 81:203{205, February 2017. doi:10.3103/S1062873817020289.1
[11] Mikhailov, V. V., et al. Sharp increasing of positron to electron fluxes ratio below 2 GV measured by the PAMELA. InJournal of Physics Conference Series, volume 798 of Journal of Physics Conference Series, page 012019. January 2017.
doi:10.1088/1742-6596/798/1/012019.
[12] Narici, L., et al. Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station
in high latitude radiation environment, , 7: 1644, 2017. Nature Physics Reports, 7:1644, May 2017.
[13] Adriani, O., et al. Measurements of Cosmic-Ray Hydrogen and Helium Isotopes with the PAMELA Experiment. ApJ,
818:68, February 2016. doi:10.3847/0004-637X/818/1/68.
[14] Adriani, O., et al. PAMELA’s measurements of geomagnetic cutoff variations during the 14 December 2006 storm. Space
Weather, 14:210{220, March 2016. doi:10.1002/2016SW001364.
[15] Adriani, O., et al. Time Dependence of the Electron and Positron Components of the Cosmic Radiation Measured by
the PAMELA Experiment between July 2006 and December 2015. Physical Review Letters, 116(24):241105, June 2016.
doi:10.1103/PhysRevLett.116.241105.
[16] Bruno, A., et al. The May 17, 2012 solar event: back-tracing analysis and flux reconstruction with PAMELA. In Journal
of Physics Conference Series, volume 675 of Journal of Physics Conference Series, page 032006. February 2016. doi:
10.1088/1742-6596/675/3/032006.
[17] Fenu, F., et al. Preliminary analysis of EUSO-TA data. Journal of Physics Conference Series, 718(5):052011, May 2016.
doi:10.1088/1742-6596/718/5/052011.
[18] Fujii, T., et al. Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope. Astroparticle
Physics, 74:64{72, February 2016. doi:10.1016/j.astropartphys.2015.10.006.
[19] Karelin, A. V., et al. The measurement of the dipole anisotropy of protons and helium cosmic rays with the PAMELA
experiment. In Journal of Physics Conference Series, volume 675 of Journal of Physics Conference Series, page 032005.February 2016. doi:10.1088/1742-6596/675/3/032005.
[20] Menn, W., et al. H, He, Li and Be Isotopes in the PAMELA-Experiment. In Journal of Physics Conference Series, volume
675 of Journal of Physics Conference Series, page 032001. February 2016. doi:10.1088/1742-6596/675/3/032001.
[21] Mikhailov, V. V., et al. Trapped positrons observed by PAMELA experiment. In Journal of Physics Conference Series,
volume 675 of Journal of Physics Conference Series, page 032003. February 2016. doi:10.1088/1742-6596/675/3/032003.
[22] Adams, J. H., et al. Calibration aspects of the JEM-EUSO mission. Experimental Astronomy, 40:91{116, November 2015.
doi:10.1007/s10686-015-9453-2.
[23] Adams, J. H., et al. Ground-based tests of JEM-EUSO components at the Telescope Array site, "EUSO-TA". Experimental
Astronomy, 40:301{314, November 2015. doi:10.1007/s10686-015-9441-6.
[24] Adams, J. H., et al. JEM-EUSO: Meteor and nuclearite observations. Experimental Astronomy, 40:253{279, November
2015. doi:10.1007/s10686-014-9375-4.
[25] Adams, J. H., et al. JEM-EUSO observational technique and exposure. Experimental Astronomy, 40:117{134, November
2015. doi:10.1007/s10686-014-9376-3.
[26] Adams, J. H., et al. Performances of JEM-EUSO: angular reconstruction. The JEM-EUSO Collaboration. Experimental
Astronomy, 40:153{177, November 2015. doi:10.1007/s10686-013-9371-0.
[27] Adams, J. H., et al. Performances of JEM-EUSO: energy and X max reconstruction. Experimental Astronomy, 40:183{214,November 2015. doi:10.1007/s10686-014-9427-9.
[28] Adams, J. H., et al. Science of atmospheric phenomena with JEM-EUSO. Experimental Astronomy, 40:239{251, November
2015. doi:10.1007/s10686-014-9431-0.
[29] Adams, J. H., et al. Space experiment TUS on board the Lomonosov satellite as pathfinder of JEM-EUSO. Experimental
Astronomy, 40:315{326, November 2015. doi:10.1007/s10686-015-9465-y.
[30] Adams, J. H., et al. The atmospheric monitoring system of the JEM-EUSO instrument. Experimental Astronomy, 40:45{
60, November 2015. doi:10.1007/s10686-014-9378-1.
[31] Adams, J. H., et al. The EUSO-Balloon pathfinder. Experimental Astronomy, 40:281{299, November 2015. doi:
10.1007/s10686-015-9467-9.
[32] Adams, J. H., et al. The infrared camera onboard JEM-EUSO. Experimental Astronomy, 40:61{89, November 2015.
doi:10.1007/s10686-014-9402-5.
[33] Adams, J. H., et al. The JEM-EUSO instrument. Experimental Astronomy, 40:19{44, November 2015. doi:10.1007/s10686-
014-9418-x.
[34] Adams, J. H., et al. The JEM-EUSO mission: An introduction. Experimental Astronomy, 40:3{17, November 2015. doi:
10.1007/s10686-015-9482-x.
[35] Adams, J. H., et al. The JEM-EUSO observation in cloudy conditions. Experimental Astronomy, 40:135{152, November
2015. doi:10.1007/s10686-014-9377-2.
[36] Adams, J. H., et al. Ultra high energy photons and neutrinos with JEM-EUSO. Experimental Astronomy, 40:215{233,November 2015. doi:10.1007/s10686-013-9353-2.
[37] Adriani, O., et al. New Upper Limit on Strange Quark Matter Abundance in Cosmic Rays with the PAMELA Space
Experiment. Physical Review Letters, 115(11):111101, September 2015. doi:10.1103/PhysRevLett.115.111101.
[38] Adriani, O., et al. Pamela Measurements of Magnetospheric Effects On High Energy Solar Particles. ApJ, 801:L3, March
2015. doi:10.1088/2041-8205/801/1/L3.
[39] Adriani, O., et al. Reentrant albedo proton fluxes measured by the PAMELA experiment. Journal of Geophysical
Research (Space Physics), 120:3728{3738, May 2015. doi:10.1002/2015JA021019.
[40] Adriani, O., et al. Search for Anisotropies in Cosmic-ray Positrons Detected By the PAMELA Experiment. ApJ, 811:21,September 2015. doi:10.1088/0004-637X/811/1/21.
[41] Adriani, O., et al. Time Dependence of the e- Flux Measured by PAMELA during the July 2006-December 2009 Solar
Minimum. ApJ, 810:142, September 2015. doi:10.1088/0004-637X/810/2/142.
[42] Adriani, O., et al. Trapped Proton Fluxes at Low Earth Orbits Measured by the PAMELA Experiment. ApJ, 799:L4,January 2015. doi:10.1088/2041-8205/799/1/L4.2
[43] Ebisuzaki, T., et al. Demonstration designs for the remediation of space debris from the international space station. Acta
Astronautica, 112:102 { 113, 2015. ISSN 0094-5765. doi:http://dx.doi.org/10.1016/j.actaastro.2015.03.004.
[44] Karelin, A., et al. Detection of a change in the north-south ratio of count rates of particles of high-energy cosmic rays during
a change in the polarity of the magnetic field of the sun. JETP Letters, 101(4):228{231, 2015. doi:10.1134/S0021364015040086.
[45] Karelin, A., et al. Measurement of electron-positron spectrum in high-energy cosmic rays in the pamela experiment.Journal of Physics: Conference Series, 632(1), 2015. doi:10.1088/1742-6596/632/1/012014.
[46] Karelin, A., et al. Measurement of the large-scale anisotropy of cosmic rays in the pamela experiment. JETP Letters,
101(5):295{298, 2015. doi:10.1134/S0021364015050136.
[47] Karelin, A., et al. Measuring the spectra of high-energy cosmic-ray particles in the pamela experiment. Bulletin of the
Russian Academy of Sciences: Physics, 79(3):289{293, 2015. doi:10.3103/S1062873815030260.
[48] Koldobskiy, S., et al. Measuring the albedo deuteron flux in the pamela satellite experiment. Bulletin of the Russian
Academy of Sciences: Physics, 79(3):294{297, 2015. doi:10.3103/S1062873815030326.
[49] Koldobskiy, S., et al. Study of deuteron spectra under radiation belt with pamela instrument. Journal of Physics:
Conference Series, 632(1), 2015. doi:10.1088/1742-6596/632/1/012060.
[50] Larsson, O., et al. Measurements of heavy-ion anisotropy and dose rates in the russian section of the international
space station with the sileye-3/alteino detector. Journal of Physics G: Nuclear and Particle Physics, 42(2), 2015. doi:
10.1088/0954-3899/42/2/025002.
[51] Malakhov, V., et al. Time variations of proton flux in earth inner radiation belt during 23/24 solar cycles based on the
pamela and the arina data. Journal of Physics: Conference Series, 632(1), 2015. doi:10.1088/1742-6596/632/1/012069.
[52] Mikhailov, V., et al. Searching for anisotropy of positrons and electrons in the pamela experiment. Bulletin of the Russian
Academy of Sciences: Physics, 79(3):298{301, 2015. doi:10.3103/S1062873815030375.
[53] Mori, N., et al. Pamela measurements of the boron and carbon spectra. Journal of Physics: Conference Series, 632(1),2015. doi:10.1088/1742-6596/632/1/012017.
[54] Munini, R., et al. Solar modulation of gcr electrons over the 23rd solar minimum with pamela. Journal of Physics:
Conference Series, 632(1), 2015. doi:10.1088/1742-6596/632/1/012073.
[55] Narici, L., et al. Radiation survey in the International Space Station. Journal of Space Weather and Space Climate,
5(27):A37, December 2015. doi:10.1051/swsc/2015037.
[56] Panasyuk, M., et al. The current status of orbital experiments for uhecr studies. Journal of Physics: Conference Series,
632(1), 2015. doi:10.1088/1742-6596/632/1/012097.
[57] Piotrowski, L., et al. On-line and off-line data analysis for the euso-ta experiment. Nuclear Instruments and Methods
in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 773:164{171, 2015.
doi:10.1016/j.nima.2014.08.045.
[58] Piotrowski, L. W., et al. The simulation of the lanfos-h food radiation contamination detector using geant4 package.Computer Physics Communications, 187(0):49 { 54, 2015. ISSN 0010-4655. doi:http://dx.doi.org/10.1016/j.cpc.2014.10.010.
[59] Prieto-Alfonso, H., et al. Radiation hardness assurance for the jem-euso space mission. Reliability Engineering and System
Safety, 133(0):137 { 145, 2015. ISSN 0951-8320. doi:http://dx.doi.org/10.1016/j.ress.2014.08.014.
[60] Usoskin, I. G., et al. Force-field parameterization of the galactic cosmic ray spectrum: Validation for Forbush decreases.Advances in Space Research, 55:2940{2945, June 2015. doi:10.1016/j.asr.2015.03.009.
[61] Adriani, O., et al. Measurement of Boron and Carbon Fluxes in Cosmic Rays with the PAMELA Experiment. ApJ, 791:93,August 2014. doi:10.1088/0004-637X/791/2/93.
[62] Adriani, O., et al. The pamela mission: Heralding a new era in precision cosmic ray physics. Physics Reports, 544(4):323
{ 370, 2014. ISSN 0370-1573. doi:http://dx.doi.org/10.1016/j.physrep.2014.06.003. The PAMELA Mission: Heralding a new era in
precision cosmic ray physics.
[63] Berrilli, F., et al. The relativistic solar particle event of May 17th, 2012 observed on board the International Space
Station. Journal of Space Weather and Space Climate, 4(27):A16, May 2014. doi:10.1051/swsc/2014014.
[64] Bruno, A., et al. Back-tracing and flux reconstruction for solar events with PAMELA. ArXiv e-prints, December 2014.
[65] Di Fino, L., et al. Solar particle event detected by ALTEA on board the International Space Station. The March 7th,
2012 X5.4 flare. Journal of Space Weather and Space Climate, 4(27):A19, May 2014. doi:10.1051/swsc/2014015.
[66] Formato, V., et al. Measurement of hydrogen and helium isotopes flux in galactic cosmic rays with the
PAMELA experiment. Nuclear Instruments and Methods in Physics Research A, 742:273{275, April 2014. doi:
10.1016/j.nima.2013.11.004.
[67] Karelin, A. V., et al. New measurements of the energy spectra of high-energy cosmic-ray protons and helium nuclei with
the calorimeter in the PAMELA experiment. Journal Of Experimental And Theoretical Physics, 119(3):448{452, SEP
2014. ISSN 1063-7761. doi:10.1134/S1063776114080056.
[68] Larsson, O., et al. Relative nuclear abundance from C to Fe and integrated flux inside the Russian part of the ISS with
the Sileye-3/Alteino experiment. Journal of Physics G Nuclear Physics, 41(1):015202, January 2014. doi:10.1088/0954-
3899/41/1/015202.
[69] Martucci, M., et al. Analysis on H spectral shape during the early 2012 SEPs with the PAMELA experiment. Nuclear
Instruments and Methods in Physics Research A, 742:158{161, April 2014. doi:10.1016/j.nima.2013.11.078.
[70] von Ballmoos, P., et al. A balloon-borne prototype for demonstrating the concept of JEM-EUSO. Advances in Space
Research, 53:1544{1550, May 2014. doi:10.1016/j.asr.2013.11.049.
[71] Adams, J. H., et al. An evaluation of the exposure in nadir observation of the JEM-EUSO mission. Astroparticle Physics,
44:76{90, April 2013. doi:10.1016/j.astropartphys.2013.01.008.
[72] Adriani, O., et al. Cosmic-Ray Positron Energy Spectrum Measured by PAMELA. Physical Review Letters, 111(8):081102,August 2013. doi:10.1103/PhysRevLett.111.081102.
[73] Adriani, O., et al. Cosmic-Ray Positron Identification with the PAMELA experiment. ArXiv e-prints, June 2013.
[74] Adriani, O., et al. Measurement of the flux of primary cosmic ray antiprotons with energies of 60 MeV to 350 GeV in
the PAMELA experiment. JETP Letters, 96(10):621{627, JAN 2013. ISSN 0021-3640. doi:10.1134/S002136401222002X.3
[75] Adriani, O., et al. Measurement of the Isotopic Composition of Hydrogen and Helium Nuclei in Cosmic Rays with the
PAMELA Experiment. ApJ, 770:2, June 2013. doi:10.1088/0004-637X/770/1/2.
[76] Adriani, O., et al. Measurements of cosmic-ray proton and helium spectra with the PAMELA calorimeter. Advances in
Space Research, 51:219{226, January 2013. doi:10.1016/j.asr.2012.09.029.
[77] Adriani, O., et al. Time Dependence of the Proton Flux Measured by PAMELA during the 2006 July-2009 December
Solar Minimum. ApJ, 765:91, March 2013. doi:10.1088/0004-637X/765/2/91.
[78] Bazilevskaya, G. A., et al. Solar energetic particle events in 2006-2012 in the PAMELA experiment data. Journal of
Physics Conference Series, 409(1):012188, February 2013. doi:10.1088/1742-6596/409/1/012188.
[79] Bruno, A., et al. Precise Cosmic Rays Measurements With Pamela. Acta Polytechnica, 53:711, 2013.
[80] Bzheumikhova, M. A., et al. Study of solar modulation of galactic cosmic rays with the PAMELA and ARINA spectrometers
in 2006-2012. Journal of Physics Conference Series, 409(1):012194, February 2013. doi:10.1088/1742-6596/409/1/012194.
[81] Campana, D., et al. Search for cosmic ray electron-positron anisotropies with the Pamela data. Journal of Physics
Conference Series, 409(1):012055, February 2013. doi:10.1088/1742-6596/409/1/012055.
[82] Carbone, R., et al. The PAMELA experiment: light-nuclei selection with stand-alone detectors. Journal of Physics
Conference Series, 409(1):012038, February 2013. doi:10.1088/1742-6596/409/1/012038.
[83] Casolino, M. The Pamela Cosmic Ray Space Observatory. International Journal of Modern Physics D, 22:1360002,September 2013. doi:10.1142/S021827181360002X.
[84] Karelin, A. V., et al. A search algorithm for finding Cosmic-Ray anisotropy with the PAMELA calorimeter. Journal of
Physics Conference Series, 409(1):012029, February 2013. doi:10.1088/1742-6596/409/1/012029.
[85] Karelin, A. V., et al. North-south asymmetry for high-energy cosmic-ray electrons measured with the PAMELA
experiment. Journal Of Experimental And Theoretical Physics, 117(2):268{273, AUG 2013. ISSN 1063-7761. doi:
10.1134/S1063776113100129.
[86] Karelin, A. V., et al. Searching for cosmic ray anisotropy using the calorimeter in the PAMELA experiment. Bulletin of
the Russian Academy of Science, Phys., 77:1305{1308, November 2013. doi:10.3103/S1062873813110154.
[87] Koldobskiy, S. A., et al. Galactic deuteron spectrum measured in PAMELA experiment. Journal of Physics Conference
Series, 409(1):012040, February 2013. doi:10.1088/1742-6596/409/1/012040.
[88] Mayorov, A. G., et al. Measurement of antiproton flux in primary cosmic radiation with PAMELA experiment. Journal
of Physics Conference Series, 409(1):012056, February 2013. doi:10.1088/1742-6596/409/1/012056.
[89] Menn, W., et al. The PAMELA space experiment. Advances in Space Research, 51:209{218, January 2013. doi:
10.1016/j.asr.2011.06.030.
[90] Mikhailov, V., et al. Cosmic ray electron and positron spectra measured with PAMELA. Journal of Physics Conference
Series, 409(1):012035, February 2013. doi:10.1088/1742-6596/409/1/012035.
[91] Mikhailov, V. V., et al. Spectra of primary cosmic-ray positrons and electrons in the PAMELA experiment. Bulletin of
the Russian Academy of Science, Phys., 77:1309{1311, November 2013. doi:10.3103/S1062873813110221.
[92] Picozza, P., et al. Cosmic Ray Study with the PAMELA Experiment. Journal of Physics Conference Series, 409(1):012003,February 2013. doi:10.1088/1742-6596/409/1/012003.
[93] Narici, L., et al. Iron flux inside the international space station is measured to be lower than predicted. Radiation
Measurements, 47(10):1030 { 1034, 2012. ISSN 1350-4487. doi:http://dx.doi.org/10.1016/j.radmeas.2012.07.006.
[94] Adriani, O., et al. Cosmic-Ray Electron Flux Measured by the PAMELA Experiment between 1 and 625 GeV. Physical
Review Letters, 106(20):201101, May 2011. doi:10.1103/PhysRevLett.106.201101.
[95] Adriani, O., et al. Observations of the 2006 December 13 and 14 Solar Particle Events in the 80 MeV n-1-3 GeV n-1Range from Space with the PAMELA Detector. ApJ, 742:102, December 2011. doi:10.1088/0004-637X/742/2/102.
[96] Adriani, O., et al. PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra. Science, 332:69{, April 2011.
doi:10.1126/science.1199172.
[97] Adriani, O., et al. The Discovery of Geomagnetically Trapped Cosmic-ray Antiprotons. ApJ, 737:L29, August 2011. doi:
10.1088/2041-8205/737/2/L29.
[98] Borisov, S. V., et al. High-energy cosmic ray proton spectrum. Bulletin Of The Lebedev Physics Institute, 38(3):68{75,MAR 2011. ISSN 1068-3356. doi:10.3103/S1068335611030031.
[99] Casolino, M., et al. Detecting ultra-high energy cosmic rays from space with unprecedented acceptance: objectives
and design of the JEM-EUSO mission. Astrophysics and Space Sciences Transactions, 7:477{482, October 2011. doi:
10.5194/astra-7-477-2011.
[100] Casolino, M., et al. Measurements of He isotopic ratio in cosmic rays in the 100 MeV - 1 GeV range with the PAMELA
experiment. Astrophysics and Space Sciences Transactions, 7:465{469, October 2011. doi:10.5194/astra-7-465-2011.
[101] Casolino, M., et al. PAMELA recent results on galactic proton and helium. Nuclear Physics B Proceedings Supplements,
212:362{367, March 2011. doi:10.1016/j.nuclphysbps.2011.03.049.
[102] de Simone, N., et al. Latitudinal and radial gradients of galactic cosmic ray protons in the inner heliosphere - PAMELA
and Ulysses observations. Astrophysics and Space Sciences Transactions, 7:425{434, September 2011. doi:10.5194/astra-7-
425-2011.
[103] Di Fino, L., et al. Heavy-Ion Anisotropy Measured by ALTEA in the International Space Station. RADIATION
RESEARCH, 176(3):397{406, SEP 2011. ISSN 0033-7587. doi:10.1667/RR2179.1.
[104] Karelin, A. V., et al. Measuring fluxes of the protons and helium nuclei of high-energy cosmic rays. Bulletin of the
Russian Academy of Science, Phys., 75:327{330, March 2011. doi:10.3103/S1062873811030208.
[105] Kawasaki, Y., et al. The focal surface of the JEM-EUSO instrument. Astrophysics and Space Sciences Transactions,
7:167{169, May 2011. doi:10.5194/astra-7-167-2011.
[106] Larosa, M., et al. Ion rates in the International Space Station during the December 2006 Solar Particle Event. Journal
of Physics G Nuclear Physics, 38(9):095102, September 2011. doi:10.1088/0954-3899/38/9/095102.
[107] Mayorov, A. G., et al. The search for antihelium in cosmic rays using data from the PAMELA experiment. Bulletin of
the Russian Academy of Science, Phys., 75:331{333, March 2011. doi:10.3103/S1062873811030282.4
[108] Mayorov, A. G., et al. Upper limit on the antihelium flux in primary cosmic rays. Soviet Journal of Experimental and
Theoretical Physics Letters, 93:628{631, August 2011. doi:10.1134/S0021364011110087.
[109] Mocchiutti, E., et al. PAMELA and electrons. Nuclear Instruments and Methods in Physics Research A, 630:28{35,February 2011. doi:10.1016/j.nima.2010.06.021.
[110] Adriani, O., et al. A statistical procedure for the identification of positrons in the PAMELA experiment. Astroparticle
Physics, 34:1{11, August 2010. doi:10.1016/j.astropartphys.2010.04.007.
[111] Adriani, O., et al. PAMELA Results on the Cosmic-Ray Antiproton Flux from 60 MeV to 180 GeV in Kinetic Energy.Physical Review Letters, 105(12):121101, September 2010. doi:10.1103/PhysRevLett.105.121101.
[112] Borisov, S. V., et al. Measurement of the high-energy electron and positron spectrum in the PAMELA experiment.Bulletin Of The Lebedev Physics Institute, 37(6):184{190, JUN 2010. ISSN 1068-3356. doi:10.3103/S1068335610060096. 3rd
All-Russian Youth School Seminar on Innovative Aspects of Basic Research on Urgent Problems of Physics, Lebedev Phys Inst, Moscow,
RUSSIA, OCT 25-30, 2009.
[113] Casolino, M., et al. 1000 days of PAMELA flight: Results and perspectives. Nuclear instruments & methods in physics
research section a-accelerators spectrometers detectors and associated equipment, 623(1):419{421, NOV 1 2010. ISSN
0168-9002. doi:10.1016/j.nima.2010.03.022. 1st International Conference on Technology and Instrumentation in Particle Physics (TIPP
09), Tsukuba, JAPAN, MAR 12-17, 2009.
[114] Casolino, M. et al. The data acquisition and handling system of JEM-EUSO experiment. Nuclear instruments & methods
in physics research section a-accelerators spectrometers detectors and associated equipment, 623(1):516{518, NOV 1
2010. ISSN 0168-9002. doi:10.1016/j.nima.2010.03.055. 1st International Conference on Technology and Instrumentation in Particle
Physics (TIPP 09), Tsukuba, JAPAN, MAR 12-17, 2009.
[115] Pugliese, M., et al. Tests of shielding effectiveness of Kevlar and Nextel onboard the International Space Station and the
Foton-M3 capsule. Radiation And Environmental Biophysics, 49(3):359{363, AUG 2010. ISSN 0301-634X. doi:10.1007/s00411-
010-0283-3.
[116] Zaconte, V., et al. High energy radiation fluences in the ISS-USLab: Ion discrimination and particle abundances. Radiation
Measurements, 45(2):168{172, FEB 2010. ISSN 1350-4487. doi:10.1016/j.radmeas.2010.01.020.
[117] Zaconte, V., et al. The radiation environment in the ISS-USLab measured by ALTEA: Spectra and relative nuclear
abundances in the polar, equatorial and SAA regions. Advances in Space Research, 46:797{799, September 2010. doi:
10.1016/j.asr.2010.02.032.
[118] Adriani, O., et al. An anomalous positron abundance in cosmic rays with energies 1.5-100GeV. Nature, 458:607{609, April
2009. doi:10.1038/nature07942.
[119] Adriani, O., et al. Measurements of quasi-trapped electron and positron fluxes with PAMELA. In press on Journ.
Geophys. Research, October 2009. doi:DOI:10.1029.
[120] Adriani, O., et al. Measurements of quasi-trapped electron and positron fluxes with PAMELA. Journal Of Geophysical
Research-Space Physics, 114, DEC 29 2009. ISSN 0148-0227. doi:10.1029/2009JA014660.
[121] Adriani, O., et al. New Measurement of the Antiproton-to-Proton Flux Ratio up to 100 GeV in the Cosmic Radiation.Physical Review Letters, 102(5):051101{+, February 2009. doi:10.1103/PhysRevLett.102.051101.
[122] Adriani, O., et al. Positrons and electrons in primary cosmic rays as measured in the PAMELA experiment. Bulletin of
the Russian Academy of Science, Phys., 73:568{570, June 2009. doi:10.3103/S1062873809050104.
[123] Adriani, O., et al. Secondary electron and positron fluxes in the near-Earth space observed in the ARINA and PAMELA
experiments. Bulletin of the Russian Academy of Science, Phys., 73:364{366, April 2009. doi:10.3103/S1062873809030253.
[124] Adriani, O., et al. The PAMELA space mission. Nuclear Physics B Proceedings Supplements, 188:296{298, March 2009.
doi:10.1016/j.nuclphysbps.2009.02.070.
[125] Boezio, M., et al. PAMELA and indirect dark matter searches. New Journal of Physics, 11(10):105023, October 2009.
doi:10.1088/1367-2630/11/10/105023.
[126] Casolino, M. Investigation of radiation environment and Light Flash phenomenon on board manned space stations with
silicon detector telescopes. Nuovo Cimento C Geophysics Space Physics C, 31:77{90, January 2008. doi:10.1393/ncc/i2008-
10282-8.
[127] Casolino, M., et al. Detection of the high energy component of Jovian electrons in Low Earth Orbit with the PAMELA
experiment. Advances in Space Research, 41:168{173, 2008. doi:10.1016/j.asr.2007.07.024.
[128] Casolino, M., et al. Launch and commissioning of the PAMELA experiment on board the Resurs-DK1 satellite. Advances
in Space Research, 41:2064{2070, 2008. doi:10.1016/j.asr.2007.06.062.
[129] Casolino, M., et al. Launch of the space experiment PAMELA. Advances in Space Research, 42:455{466, August 2008.
doi:10.1016/j.asr.2007.07.023.
[130] Casolino, M., et al. Magnetospheric and solar physics observations with the PAMELA experiment. Nuclear Instruments
and Methods in Physics Research A, 588:243{246, April 2008. doi:10.1016/j.nima.2008.01.046.
[131] Casolino, M., et al. The PAMELA experiment: A space-borne observatory for heliospheric phenomena. Advances in
Space Research, 41:2043{2049, 2008. doi:10.1016/j.asr.2007.06.061.
[132] di Felice, V., et al. PAMELA observational capabilities of Jovian electrons. Advances in Space Research, 41:2037{2042,2008. doi:10.1016/j.asr.2007.08.025.
[133] Leonov, A. A., et al. Inner radiation belt source of helium and heavy hydrogen isotopes. Advances in Space Research,
41:86{91, 2008. doi:10.1016/j.asr.2006.09.009.
[134] Papini, P., et al. In-flight performances of the PAMELA satellite experiment. Nuclear Instruments and Methods in
Physics Research A, 588:259{266, April 2008. doi:10.1016/j.nima.2008.01.052.
[135] Pugliese, M., et al. SPADA: A project to study the effectiveness of shielding materials in space. Nuovo Cimento C
Geophysics Space Physics C, 31:91{97, January 2008. doi:10.1393/ncc/i2008-10283-7.
[136] Zaconte, V., et al. ALTEA: The instrument calibration. Nuclear Instruments and Methods in Physics Research B,
266:2070{2078, May 2008. doi:10.1016/j.nimb.2008.02.072.
[137] Adriani, O., et al. The Pamela experiment ready for flight. Nuclear Instruments and Methods in Physics Research A,
572:471{473, March 2007. doi:10.1016/j.nima.2006.10.316.5
[138] Badoni, D., et al. Silicon photomultipliers: On ground characterizations and modelling for use in front-end electronics
aimed to space-borne experiments. Nuclear Instruments and Methods in Physics Research A, 572:402{403, March 2007.
doi:10.1016/j.nima.2006.10.224.
[139] Badoni, D., et al. SiPM: Characterizations, modelling and VLSI front-end dedicated development. Nuovo cimento della
societa italiana di fisica c-geophysics and space physics, 30(5):503{514, SEP-OCT 2007. ISSN 1124-1896. doi:10.1393/ncc/i2008-
10263-y. 1st Workshop on Photon Detection for High Energy Medical Space Applications, Perugia, ITALY, JUN 13-14, 2007.
[140] Casolino, M. Cosmic ray investigations during the Marco Polo and Eneide missions with the Sileye-3/Alteino experiment.Microgravity Science And TechnoloGY, 19(5-6):49{53, 2007. ISSN 0938-0108. Meeting of Science on European Soyuz Missions
to the ISS, Toledo, SPAIN, JUN 27-30, 2006.
[141] Casolino, M. et al. Data processing and distribution in the PAMELA experiment. Nuclear Instruments and Methods in
Physics Research A, 572:351{352, March 2007. doi:10.1016/j.nima.2006.10.312.
[142] Casolino, M., et al. The Altcriss project on board the International Space Station. Advances in Space Research, 40:1746{
1753, 2007. doi:10.1016/j.asr.2007.04.037.
[143] Casolino, M., et al. The PAMELA storage and control unit. Nuclear Instruments and Methods in Physics Research A,
572:349{350, March 2007. doi:10.1016/j.nima.2006.10.310.
[144] Casolino, M., et al. The Sileye Altcriss experiment on board the International Space Station. Nuclear Instruments and
Methods in Physics Research A, 572:235{236, March 2007. doi:10.1016/j.nima.2006.10.311.
[145] Casolino, M., et al. The Sirad experiment on board the International Space Station. Nuclear Instruments and Methods
in Physics Research A, 572:233{234, March 2007. doi:10.1016/j.nima.2006.10.313.
[146] Leonov, A., et al. The measurements of light high-energy ions in NINA-2 experiment. Annales Geophysicae, 25:2029{2036,October 2007.
[147] Picozza, P., et al. PAMELA A payload for antimatter matter exploration and light-nuclei astrophysics. Astroparticle
Physics, 27:296{315, April 2007. doi:10.1016/j.astropartphys.2006.12.002.
[148] Sannita, W., et al. Electrophysiological responses of the mouse retina to 12C ions. Neuroscience Letters, 416:231{235,January 2007.
[149] Sgrigna, V., et al. First data from the EGLE experiment onboard the ISS. Microgravity Science And Technology, 19(5-
6):70{74, 2007. ISSN 0938-0108. Meeting of Science on European Soyuz Missions to the ISS, Toledo, SPAIN, JUN 27-30, 2006.
[150] Spillantini, P., et al. Shielding from cosmic radiation for interplanetary missions: Active and passive methods. Radiation
Measurements, 42(3):14{23, January 2007.
[151] Casolino, M. Observations of the Light Flash phenomenon in space. Advances in Space Research, 38:1177{1181, 2006.
doi:10.1016/j.asr.2005.04.110.
[152] Casolino, M., et al. Cosmic-ray observations of the heliosphere with the PAMELA experiment. Advances in Space
Research, 37:1848{1852, 2006. doi:10.1016/j.asr.2005.06.035.
[153] Casolino, M., et al. Detector response and calibration of the cosmic-ray detector of the Sileye-3/Alteino experiment.Advances in Space Research, 37:1691{1696, 2006. doi:10.1016/j.asr.2005.03.136.
[154] Casolino, M., et al. Relative nuclear abundances inside ISS with Sileye-3/Alteino experiment. Advances in Space Research,
37:1685{1690, 2006. doi:10.1016/j.asr.2006.02.050.
[155] Casolino, M., et al. The PAMELA Storage and Control Unit. Advances in Space Research, 37:1857{1861, 2006. doi:
10.1016/j.asr.2005.06.012.
[156] Casolino, M., et al. YODA++: A proposal for a semi-automatic space mission control. Advances in Space Research,
37:1884{1888, 2006. doi:10.1016/j.asr.2005.06.033.
[157] Fino, L. D., et al. ALTEA data handling. Advances in Space Research, 37:1710{1715, 2006. doi:10.1016/j.asr.2005.01.105.
[158] Scrimaglio, R., et al. Analysis of Sileye-3/Alteino data with a neural network technique: Particle discrimination and
energy reconstruction. Advances in Space Research, 37:1697{1703, 2006. doi:10.1016/j.asr.2005.12.004.
[159] Scrimaglio, R., et al. Simulation of the ALTEA experiment on the International Space Station with the Geant 3.21
program. Advances in Space Research, 37:1770{1776, 2006. doi:10.1016/j.asr.2004.11.029.
[160] Sparvoli, R., et al. Space qualification tests of the PAMELA instrument. Advances in Space Research, 37:1841{1847, 2006.
doi:10.1016/j.asr.2005.05.100.
[161] Zaconte, V., et al. ALTEA: flight model calibration at GSI. Advances in Space Research, 37:1704{1709, 2006. doi:
10.1016/j.asr.2005.02.028.
[162] Casolino, M., et al. Shielding against Cosmic Radiation on Interplanetary Missions. In A. Wilson & B. Elmann-Larsen,
editor, Topical Teams in Life & Physical Sciences: Towards New Research Applications, volume 1281 of ESA Special
Publication, pages 184{199. June 2005.
[163] Leonov, A., et al. Pitch angle distribution of trapped energetic protons and helium isotope nuclei measured along the
Resurs-01 No. 4 LEO satellite. Annales Geophysicae, 23(9):2983{2987, November 2005. ISSN 0992-7689.
[164] Stozhkov, Y. I., et al. About Separation of Hadron and Electromagnetic Cascades in the Pamela Calorimeter. International
Journal of Modern Physics A, 20:6745{6748, 2005. doi:10.1142/S0217751X0502999X.
[165] Boezio, M., et al. The space experiment PAMELA. Nuclear Physics B-Proceedings Supplements, 134:39{46, SEP 2004.
ISSN 0920-5632. doi:10.1016/j.nuclphysbps.2004.08.006. 2nd International Conference on Particle and Fundamental Physics in Space,
Washington, DC, DEC 10-12, 2003.
[166] Bongi, M., et al. PAMELA: A Satellite Experiment for Antiparticles Measurement in Cosmic Rays. IEEE Transactions
on Nuclear Science, 51:854{859, June 2004. doi:10.1109/TNS.2004.829504.
[167] Narici, L., et al. The ALTEA/ALTEINO projects: studying functional effects of microgravity and cosmic radiation.Advances in Space Research, 33:1352{1357, 2004. doi:10.1016/j.asr.2003.09.052.
[168] Papini, P., et al. High-Energy Deuteron Measurement with the CAPRICE98 Experiment. ApJ, 615:259{274, November
2004. doi:10.1086/424027.
[169] Sannita, W. G., et al. Effects of heavy ions on visual function and electrophysiology of rodents: the ALTEA-MICE project.Advances in Space Research, 33:1347{1351, 2004. doi:10.1016/j.asr.2003.11.007.6
[170] Bidoli, V., et al. Isotope composition of secondary hydrogen and helium above the atmosphere measured by the
instruments NINA and NINA-2. Journal of Geophysical Research (Space Physics), 108:1211{+, May 2003. doi:
10.1029/2002JA009684.
[171] Boezio, M., et al. Energy spectra of atmospheric muons measured with the CAPRICE98 balloon experiment. Phys. Rev. D,
67(7):072003{+, April 2003. doi:10.1103/PhysRevD.67.072003.
[172] Boezio, M., et al. The cosmic-ray proton and helium spectra measured with the CAPRICE98 balloon experiment.Astroparticle Physics, 19:583{604, August 2003. doi:10.1016/S0927-6505(02)00267-0.
[173] Casolino, M., et al. Space travel: Dual origins of light flashes seen in space. Nature, 422(6933):680{680, Apr 2003. ISSN
0028-0836. doi:10.1038/422680a.
[174] Casolino, M., et al. Study of the radiation environment on MIR space station with SILEYE-2 experiment. Advances in
Space Research, 31:135{140, 2003. doi:10.1016/S0273-1177(02)00880-3.
[175] Furano, G., et al. The small satellite NINA-MITA to study galactic and solar cosmic rays in low-altitude polar orbit.Advances in Space Research, 31:351{356, 2003. doi:10.1016/S0273-1177(02)00625-7.
[176] Narici, L., et al. ALTEA: Anomalous long term effects in astronauts. A probe on the influence of cosmic radiation and
microgravity on the central nervous system during long flights. Advances in Space Research, 31:141{146, 2003. doi:
10.1016/S0273-1177(02)00881-5.
[177] Adriani, O., et al. The PAMELA experiment on satellite and its capability in cosmic rays measurements. Nuclear
Instruments and Methods in Physics Research A, 478:114{118, February 2002. doi:10.1016/S0168-9002(01)01726-0.
[178] Ambriola, M., et al. High-energy deuteron measurement with the CAPRICE98 experiment. Nuclear Physics BProceedings Supplements, 113:88{94, DEC 2002. ISSN 0920-5632. doi:10.1016/S0920-5632(02)01826-1. 1st International Conference
on Particle and Fundamental Physics in Space, ISOLA ELBA, ITALY, MAY 14-19, 2002.
[179] Avdeev, S., et al. AST-Charge particle spectrometer for radiation measurements onboard International Space Station.Izvestiya Akademii Nauk Seriya Fizicheskaya, 66(11):1670{1672, NOV 2002. ISSN 1026-3489. 27th National Conference on
Cosmic Rays, HAMBURG, GERMANY, AUG, 2001.
[180] Avdeev, S., et al. Eye light flashes on the mir space station. Acta Astronautica, 50:511{525, April 2002.
[181] Bakaldin, A., et al. Geomagnetically trapped light isotopes observed with the detector NINA. Journal of Geophysical
Research (Space Physics), 107:1171{+, August 2002. doi:10.1029/2001JA900172.
[182] Bakaldin, A., et al. Light Isotope Abundances in Solar Energetic Particles Measured by the Space Instrument NINA.
ApJ, 577:513{523, September 2002. doi:10.1086/342128.
[183] Bidoli, V., et al. Energy spectrum of secondary protons above the atmosphere measured by the instruments NINA and
NINA-2. Annales Geophysicae, 20:1693{1697, October 2002.
[184] Casolino, M. Low Energy Solar and Galactic Cosmic Rays at 1 AU. International Journal of Modern Physics A, 17:1685{
1694, 2002. doi:10.1142/S0217751X02011187.
[185] Casolino, M. Radiation in space: Causes, measures and countermeasures. Frascati Physics Series XXIV, XXIV:195{216,2002.
[186] Casolino, M., et al. The sileye-3/alteino experiment for the study of light flashes, radiation environment and astronaut
brain activity on board the international space station. Journ. Rad. Res., 43:S47+{, 2002.
[187] Casolino, M., et al. The Sileye-3/Alteino experiment on board the International Space Station. Nuclear Physics BProceedings Supplements, 113:71{78, DEC 2002. ISSN 0920-5632. doi:10.1016/S0920-5632(02)01824-8. 1st International Conference
on Particle and Fundamental Physics in Space, ISOLA ELBA, ITALY, MAY 14-19, 2002.
[188] Aloisio, A., et al. The ARGO-YBJ experiment in Tibet. Nuovo cimento della societa italiana di fisica c-geophysics and
space physics, 24(4-5):739{744, AUG-OCT 2001. ISSN 1124-1896. Chacaltaya Meeting on Cosmic Ray Physics, LA PZ, BOLIVIA,
JUL 23-27, 2000.
[189] Barbiellini, G., et al. CAPRICE98: a balloon-borne magnetic spectrometer equipped with a gas RICH and a silicon
calorimeter to study cosmic rays. Nuclear Instruments and Methods in Physics Research A, 461:269{271, April 2001.
doi:10.1016/S0168-9002(00)01222-5.
[190] Bergstr¨om, D., et al. Performance of the CAPRICE98 balloon-borne gas-RICH detector. Nuclear Instruments and
Methods in Physics Research A, 463:161{174, May 2001. doi:10.1016/S0168-9002(01)00202-9.
[191] Bidoli, V., et al. Determining the characteristics of cosmic-radiation nuclei in the Sileye experiment on board the
Mir orbital station. Instruments And Experimental Techniques, 44(5):623{625, SEP-OCT 2001. ISSN 0020-4412. doi:
10.1023/A:1012389322155.
[192] Bidoli, V., et al. In-flight performance of SilEye-2 experiment and cosmic ray abundances inside the Mir space station.Journal of Physics G Nuclear Physics, 27:2051{2064, October 2001. doi:10.1088/0954-3899/27/10/307.
[193] Bidoli, V., et al. In-Orbit Performance of the Space Telescope NINA and Galactic Cosmic-Ray Flux Measurements.
ApJS, 132:365{375, February 2001. doi:10.1086/318955.
[194] Boezio, M., et al. Measurements of cosmic-ray electrons and positrons by the Wizard/CAPRICE collaboration. Advances
in Space Research, 27:669{674, 2001. doi:10.1016/S0273-1177(01)00108-9.
[195] Boezio, M., et al. The Cosmic-Ray Antiproton Flux between 3 and 49 GeV. ApJ, 561:787{799, November 2001. doi:
10.1086/323366.
[196] Bonvicini, V., et al. The PAMELA experiment in space. Nuclear Instruments and Methods in Physics Research A,
461:262{268, April 2001. doi:10.1016/S0168-9002(00)01221-3.
[197] Circella, M., et al. Measurements of primary cosmic-ray hydrogen and helium by the WiZard collaboration. Advances
in Space Research, 27:755{760, 2001. doi:10.1016/S0273-1177(01)00117-X.
[198] Narici, L., et al. The altea facility on the international space station. Physica Medica, 17:255+{, 2001.
[199] Sparvoli, R., et al. A solid-state detector as the EPD aboard the Solar Orbiter. In B. Battrick, H. Sawaya-Lacoste, E. Marsch,
V. Martinez Pillet, B. Fleck, & R. Marsden, editor, Solar encounter. Proceedings of the First Solar Orbiter Workshop, volume
493 of ESA Special Publication, pages 371{375. September 2001.
[200] Spillantini, P., et al. Radiation shielding of astronauts in interplanetary flights: the cream surveyor to mars and the
magnetic lens system for a spaceship. Physica Medica, 17:249{254, 2001.7
[201] Bergstr¨om, D., et al. First Mass-resolved Measurement of High-Energy Cosmic-Ray Antiprotons. ApJ, 534:L177{L180, May
2000. doi:10.1086/312665.
[202] Bidoli, V., et al. Study of Cosmic Rays and Light Flashes on Board Space Station MIR: The Sileye Experiment. Advances
in Space Research, 25:2075{2079, 2000. doi:10.1016/S0273-1177(99)01017-0.
[203] Boezio, M., et al. Measurement of the flux of atmospheric muons with the caprice94 apparatus. Phys. Rev. D, 62(3):032007,Jul 2000. doi:10.1103/PhysRevD.62.032007.
[204] Boezio, M., et al. The Cosmic-Ray Electron and Positron Spectra Measured at 1 AU during Solar Minimum Activity.
ApJ, 532:653{669, March 2000. doi:10.1086/308545.
[205] Circella, M., et al. The WiZard Collaboration cosmic ray muon measurements in the atmosphere. Nuclear Physics BProceedings Supplements, 85:355{360, MAY 2000. ISSN 0920-5632. doi:10.1016/S0920-5632(00)00529-6. 6th Topical Seminar on
Neutrino and Astroparticle Physics, PISA, ITALY, MAY 17-21, 1999.
[206] Sparvoli, R., et al. Launch in orbit of the telescope NINA for cosmic ray observations: preliminary results. Nuclear
Physics B-Proceedings Supplements, 85:28{33, MAY 2000. ISSN 0920-5632. doi:10.1016/S0920-5632(00)00478-3. 6th Topical
Seminar on Neutrino and Astroparticle Physics, PISA, ITALY, MAY 17-21, 1999.
[207] Ambriola, M., et al. CAPRICE98: A balloon borne magnetic spectrometer to study cosmic ray antimatter and composition
at different atmospheric depths. Nuclear Physics B-Proceedings Supplements, 78:32{37, AUG 1999. ISSN 0920-5632. doi:
10.1016/S0920-5632(99)00519-8. 6th International Conference on Advanced Technology and Particle Physics, VILLA OLMO, ITALY,
OCT 05-09, 1998.
[208] Bidoli, V., et al. ALTEA: A Facility to Study the Interaction of Brain Functionality and Visual System with Cosmic
Radiation on ISS. In A. Wilson, editor, Utilisation of the International Space station 2, volume 433 of ESA Special
Publication, pages 505{+. February 1999.
[209] Bidoli, V., et al. The space telescope NINA: results of a beam test calibration. Nuclear Instruments and Methods in
Physics Research A, 424:414{424, March 1999. doi:10.1016/S0168-9002(98)01196-6.
[210] Boezio, M., et al. New Measurement of the Flux of Atmospheric Muons. Physical Review Letters, 82:4757{4760, June
1999. doi:10.1103/PhysRevLett.82.4757.
[211] Boezio, M., et al. The Cosmic-Ray Proton and Helium Spectra between 0.4 and 200 GV. ApJ, 518:457{472, June 1999.
doi:10.1086/307251.
[212] Kremer, J., et al. Measurements of Ground-Level Muons at Two Geomagnetic Locations. Physical Review Letters,
83:4241{4244, November 1999. doi:10.1103/PhysRevLett.83.4241.
[213] Bakaldin, A., et al. Experiment NINA: investigation of low energy nuclear fluxes in the near-Earth space. Astroparticle
Physics, 8:109{121, December 1997. doi:10.1016/S0927-6505(97)00047-9.
[214] Barbiellini, G., et al. A fine-grained silicon detector for high-energy gamma-ray astrophysics. Nuovo Cimento C Geophysics
Space Physics C, 20:775{781, October 1997.
[215] Bellotti, R., et al. Study of the combined particle identification capability of a transition radiation detector and a silicon
imaging calorimeter during the TS93 balloon flight. Astroparticle Physics, 7:219{230, August 1997. doi:10.1016/S0927-
6505(97)00027-3.
[216] Bidoli, V., et al. Experimental beam test of the SilEye2 apparatus. Nuclear Instruments and Methods in Physics Research
A, 399:477{488, February 1997. doi:10.1016/S0168-9002(97)00938-8.
[217] Boezio, M., et al. The Cosmic-Ray Antiproton Flux between 0.62 and 3.19 G eV Measured Near Solar Minimum Activity.
ApJ, 487:415{+, September 1997. doi:10.1086/304593.
[218] Casolino, M., et al. Light flash observation in space: Experiment ELFO. Nuovo Cimento D Serie, 19:1601{+, October 1997.
[219] Aversa, F., et al. Identification of cosmic ray electrons and positrons by neural networks. Astroparticle Physics, 5:111{117,August 1996. doi:10.1016/0927-6505(96)00009-6.
[220] Barbiellini, G., et al. Performance of the CAPRICE RICH detector during the 1994 balloon flight. Nuclear Instruments
and Methods in Physics Research A, 371:169{173, February 1996. doi:10.1016/0168-9002(95)01152-8.
[221] Barbiellini, G., et al. The cosmic ray positron to electron ratio in the energy range 0.85 to 14GeV. A&A, 309:L15{L18, May
1996.
[222] Bocciolini, M., et al. The WiZard/CAPRICE silicon-tungsten calorimeter. Nuclear Instruments and Methods in Physics
Research A, 370:403{412, February 1996. doi:10.1016/0168-9002(95)00841-1.
[223] Borisyuk, R., et al. Gamma-ray energy determination using neural network algorithms for an imaging silicon calorimeter.Nuclear Instruments and Methods in Physics Research A, 381:512{516, February 1996. doi:10.1016/S0168-9002(96)00727-9.
[224] Golden, R. L., et al. Measurement of the Positron to Electron Ratio in Cosmic Rays above 5 GeV. ApJ, 457:L103+,February 1996. doi:10.1086/309896.
[225] Aversa, F., et al. WiZard Si-W imaging calorimeter: a preliminary study on its particle identification capability during
a balloon flight in 1993. Nuclear Instruments and Methods in Physics Research A, 360:17{21, February 1995. doi:
10.1016/0168-9002(94)01217-2.
[226] Barbiellini, g., et al. A Wide-Aperture Telescope For High-Energy Gamma-Rays Detection. Nuclear Physics B, (43):253{
256, JUN 1995. ISSN 0550-3213. doi:10.1016/0920-5632(95)00484-Q. Workshop on Trends in Astroparticle Physics, STOCKHOLM,
SWEDEN, SEP 22-25, 1994.
[227] Barbiellini, G., et al. NINA: a lightweight silicon strip detector for cosmic ray research in space. In P. Y. Bely &
J. B. Breckinridge, editor, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 2478 ofSociety of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pages 239{249. June 1995.
[228] Barbiellini, G., et al. The GILDA mission: a new technique for a gamma-ray telescope in the energy range 20 MeV-100 GeV.Nuclear Instruments and Methods in Physics Research A, 354:547{552, February 1995. doi:10.1016/0168-9002(94)01061-7.
[229] Candusso, M., et al. Neural networks with stochastic preprocessing for particle recognition in cosmic ray experiments.Nuclear Instruments and Methods in Physics Research A, 360:371{374, February 1995. doi:10.1016/0168-9002(94)01620-8.
[230] Casolino, M. et al. A cellular automaton to filter events in a high energy physics discrete calorimeter. Nuclear Instruments
and Methods in Physics Research A, 364:516{523, February 1995. doi:10.1016/0168-9002(95)00520-X.8
[231] Basti, G., et al. Using backpropagation to reckon with discrete and continuous signals from a silicon calorimeter. In
S. K. Rogers & D. W. Ruck, editor, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume
2243 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pages 496{507. March 1994.
[232] Basti, G., et al. Automatic redefinition of the fuzzy membership function to deal with high fluctuating phenomena in
neural nets. In D. W. Ruck, editor, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume
1966 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pages 241{254. August 1993.
[233] Bocciolini, m., et al. Silicon Calorimeter For Cosmic Antimatter Search. Nuclear Physics B, (32):77{82, MAY 1993. ISSN
0550-3213. doi:10.1016/0920-5632(93)90011-T. 3rd international conf on advanced technology and particle physics, como, italy, jun
22-26, 1992.9
the PAMELA Experiment between July 2006 and December 2015. Physical Review Letters, 116(24):241105, June 2016.
doi:10.1103/PhysRevLett.116.241105.
[2] Adriani, O., et al. New Upper Limit on Strange Quark Matter Abundance in Cosmic Rays with the PAMELA Space
Experiment. Physical Review Letters, 115(11):111101, September 2015. doi:10.1103/PhysRevLett.115.111101.
[3] Adriani, O., et al. Measurement of Boron and Carbon Fluxes in Cosmic Rays with the PAMELA Experiment. ApJ, 791:93,August 2014. doi:10.1088/0004-637X/791/2/93.
[4] Adriani, O., et al. The pamela mission: Heralding a new era in precision cosmic ray physics. Physics Reports, 544(4):323
– 370, 2014. ISSN 0370-1573. doi:http://dx.doi.org/10.1016/j.physrep.2014.06.003. The PAMELA Mission: Heralding a new era in
precision cosmic ray physics.
[5] Adriani, O., et al. Cosmic-Ray Positron Energy Spectrum Measured by PAMELA. Physical Review Letters, 111(8):081102,August 2013. doi:10.1103/PhysRevLett.111.081102.
[6] Adriani, O., et al. Cosmic-Ray Electron Flux Measured by the PAMELA Experiment between 1 and 625 GeV. Physical
Review Letters, 106(20):201101, May 2011. doi:10.1103/PhysRevLett.106.201101.
[7] Adriani, O., et al. PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra. Science, 332:69–, April 2011.
doi:10.1126/science.1199172.
[8] Adriani, O., et al. PAMELA Results on the Cosmic-Ray Antiproton Flux from 60 MeV to 180 GeV in Kinetic Energy.Physical Review Letters, 105(12):121101, September 2010. doi:10.1103/PhysRevLett.105.121101.
[9] Adriani, O., et al. An anomalous positron abundance in cosmic rays with energies 1.5-100GeV. Nature, 458:607–609, April
2009. doi:10.1038/nature07942.
[10] Casolino, M., et al. Space travel: Dual origins of light flashes seen in space. Nature, 422(6933):680–680, Apr 2003. ISSN
0028-0836. doi:10.1038/422680a.
Full listPAMELA collaboration: 60 authors in alphabetical order
JEM-EUSO collaboration: 150 authors in alphabetical order[1] Abdellaoui, G., et al. Cosmic ray oriented performance studies for the JEM-EUSO first level trigger. NUCLEAR
INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS
DETECTORS AND ASSOCIATED EQUIPMENT, 866:150{163, SEP 11 2017. ISSN 0168-9002. doi:
10.1016/j.nima.2017.05.043.
[2] Abdellaoui, G., et al. Meteor studies in the framework of the JEM-EUSO program. PLANETARY AND SPACE SCIENCE,
143(SI):245{255, SEP 1 2017. ISSN 0032-0633. doi:10.1016/j.pss.2016.12.001. 9th Meteoroids Conference, ESTEC, NETHERLANDS,
JUN 06-10, 2016.
[3] Adriani, O., et al. Ten years of PAMELA in space. RIVISTA DEL NUOVO CIMENTO, 40(10):473{522, OCT 2017. ISSN
0393-697X. doi:10.1393/ncr/i2017-10140-x.
[4] Bruno, A., et al. Geomagnetically trapped, albedo and solar energetic particles: Trajectory analysis and flux
reconstruction with PAMELA. ADVANCES IN SPACE RESEARCH, 60(4):788{795, AUG 15 2017. ISSN 0273-1177.
doi:10.1016/j.asr.2016.06.042.
[5] Bogomolov, E. A., et al. Spectra of solar neutrons with energies of 10 - 1000 MeV in the PAMELA experiment in the
flare events of 2006 - 2015. Bulletin of the Russian Academy of Sciences, Physics, 81:132{135, February 2017. doi:
10.3103/S1062873817020113.
[6] Galper, A. M., et al. The PAMELA experiment: a decade of Cosmic Ray Physics in space. In Journal of Physics Conference
Series, volume 798 of Journal of Physics Conference Series, page 012033. January 2017. doi:10.1088/1742-6596/798/1/012033.
[7] Koldobskiy, S. A., et al. Solar modulation of cosmic deuteron fluxes in the PAMELA experiment. Bulletin of the Russian
Academy of Sciences, Physics, 81:151{153, February 2017. doi:10.3103/S106287381702023X.
[8] Mayorov, A. G., et al. Solar modulation of galactic cosmic rays during 2006-2015 based on PAMELA and ARINA data.
In Journal of Physics Conference Series, volume 798 of Journal of Physics Conference Series, page 012042. January 2017.
doi:10.1088/1742-6596/798/1/012042.
[9] Mikhailov, V. V., et al. Modulation of electrons and positrons in 2006 - 2015 in the PAMELA experiment. Bulletin of
the Russian Academy of Sciences, Physics, 81:154{156, February 2017. doi:10.3103/S1062873817020277.
[10] Mikhailov, V. V., et al. Secondary positrons and electrons in near-Earth space in the PAMELA experiment. Bulletin of
the Russian Academy of Sciences, Physics, 81:203{205, February 2017. doi:10.3103/S1062873817020289.1
[11] Mikhailov, V. V., et al. Sharp increasing of positron to electron fluxes ratio below 2 GV measured by the PAMELA. InJournal of Physics Conference Series, volume 798 of Journal of Physics Conference Series, page 012019. January 2017.
doi:10.1088/1742-6596/798/1/012019.
[12] Narici, L., et al. Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station
in high latitude radiation environment, , 7: 1644, 2017. Nature Physics Reports, 7:1644, May 2017.
[13] Adriani, O., et al. Measurements of Cosmic-Ray Hydrogen and Helium Isotopes with the PAMELA Experiment. ApJ,
818:68, February 2016. doi:10.3847/0004-637X/818/1/68.
[14] Adriani, O., et al. PAMELA’s measurements of geomagnetic cutoff variations during the 14 December 2006 storm. Space
Weather, 14:210{220, March 2016. doi:10.1002/2016SW001364.
[15] Adriani, O., et al. Time Dependence of the Electron and Positron Components of the Cosmic Radiation Measured by
the PAMELA Experiment between July 2006 and December 2015. Physical Review Letters, 116(24):241105, June 2016.
doi:10.1103/PhysRevLett.116.241105.
[16] Bruno, A., et al. The May 17, 2012 solar event: back-tracing analysis and flux reconstruction with PAMELA. In Journal
of Physics Conference Series, volume 675 of Journal of Physics Conference Series, page 032006. February 2016. doi:
10.1088/1742-6596/675/3/032006.
[17] Fenu, F., et al. Preliminary analysis of EUSO-TA data. Journal of Physics Conference Series, 718(5):052011, May 2016.
doi:10.1088/1742-6596/718/5/052011.
[18] Fujii, T., et al. Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope. Astroparticle
Physics, 74:64{72, February 2016. doi:10.1016/j.astropartphys.2015.10.006.
[19] Karelin, A. V., et al. The measurement of the dipole anisotropy of protons and helium cosmic rays with the PAMELA
experiment. In Journal of Physics Conference Series, volume 675 of Journal of Physics Conference Series, page 032005.February 2016. doi:10.1088/1742-6596/675/3/032005.
[20] Menn, W., et al. H, He, Li and Be Isotopes in the PAMELA-Experiment. In Journal of Physics Conference Series, volume
675 of Journal of Physics Conference Series, page 032001. February 2016. doi:10.1088/1742-6596/675/3/032001.
[21] Mikhailov, V. V., et al. Trapped positrons observed by PAMELA experiment. In Journal of Physics Conference Series,
volume 675 of Journal of Physics Conference Series, page 032003. February 2016. doi:10.1088/1742-6596/675/3/032003.
[22] Adams, J. H., et al. Calibration aspects of the JEM-EUSO mission. Experimental Astronomy, 40:91{116, November 2015.
doi:10.1007/s10686-015-9453-2.
[23] Adams, J. H., et al. Ground-based tests of JEM-EUSO components at the Telescope Array site, "EUSO-TA". Experimental
Astronomy, 40:301{314, November 2015. doi:10.1007/s10686-015-9441-6.
[24] Adams, J. H., et al. JEM-EUSO: Meteor and nuclearite observations. Experimental Astronomy, 40:253{279, November
2015. doi:10.1007/s10686-014-9375-4.
[25] Adams, J. H., et al. JEM-EUSO observational technique and exposure. Experimental Astronomy, 40:117{134, November
2015. doi:10.1007/s10686-014-9376-3.
[26] Adams, J. H., et al. Performances of JEM-EUSO: angular reconstruction. The JEM-EUSO Collaboration. Experimental
Astronomy, 40:153{177, November 2015. doi:10.1007/s10686-013-9371-0.
[27] Adams, J. H., et al. Performances of JEM-EUSO: energy and X max reconstruction. Experimental Astronomy, 40:183{214,November 2015. doi:10.1007/s10686-014-9427-9.
[28] Adams, J. H., et al. Science of atmospheric phenomena with JEM-EUSO. Experimental Astronomy, 40:239{251, November
2015. doi:10.1007/s10686-014-9431-0.
[29] Adams, J. H., et al. Space experiment TUS on board the Lomonosov satellite as pathfinder of JEM-EUSO. Experimental
Astronomy, 40:315{326, November 2015. doi:10.1007/s10686-015-9465-y.
[30] Adams, J. H., et al. The atmospheric monitoring system of the JEM-EUSO instrument. Experimental Astronomy, 40:45{
60, November 2015. doi:10.1007/s10686-014-9378-1.
[31] Adams, J. H., et al. The EUSO-Balloon pathfinder. Experimental Astronomy, 40:281{299, November 2015. doi:
10.1007/s10686-015-9467-9.
[32] Adams, J. H., et al. The infrared camera onboard JEM-EUSO. Experimental Astronomy, 40:61{89, November 2015.
doi:10.1007/s10686-014-9402-5.
[33] Adams, J. H., et al. The JEM-EUSO instrument. Experimental Astronomy, 40:19{44, November 2015. doi:10.1007/s10686-
014-9418-x.
[34] Adams, J. H., et al. The JEM-EUSO mission: An introduction. Experimental Astronomy, 40:3{17, November 2015. doi:
10.1007/s10686-015-9482-x.
[35] Adams, J. H., et al. The JEM-EUSO observation in cloudy conditions. Experimental Astronomy, 40:135{152, November
2015. doi:10.1007/s10686-014-9377-2.
[36] Adams, J. H., et al. Ultra high energy photons and neutrinos with JEM-EUSO. Experimental Astronomy, 40:215{233,November 2015. doi:10.1007/s10686-013-9353-2.
[37] Adriani, O., et al. New Upper Limit on Strange Quark Matter Abundance in Cosmic Rays with the PAMELA Space
Experiment. Physical Review Letters, 115(11):111101, September 2015. doi:10.1103/PhysRevLett.115.111101.
[38] Adriani, O., et al. Pamela Measurements of Magnetospheric Effects On High Energy Solar Particles. ApJ, 801:L3, March
2015. doi:10.1088/2041-8205/801/1/L3.
[39] Adriani, O., et al. Reentrant albedo proton fluxes measured by the PAMELA experiment. Journal of Geophysical
Research (Space Physics), 120:3728{3738, May 2015. doi:10.1002/2015JA021019.
[40] Adriani, O., et al. Search for Anisotropies in Cosmic-ray Positrons Detected By the PAMELA Experiment. ApJ, 811:21,September 2015. doi:10.1088/0004-637X/811/1/21.
[41] Adriani, O., et al. Time Dependence of the e- Flux Measured by PAMELA during the July 2006-December 2009 Solar
Minimum. ApJ, 810:142, September 2015. doi:10.1088/0004-637X/810/2/142.
[42] Adriani, O., et al. Trapped Proton Fluxes at Low Earth Orbits Measured by the PAMELA Experiment. ApJ, 799:L4,January 2015. doi:10.1088/2041-8205/799/1/L4.2
[43] Ebisuzaki, T., et al. Demonstration designs for the remediation of space debris from the international space station. Acta
Astronautica, 112:102 { 113, 2015. ISSN 0094-5765. doi:http://dx.doi.org/10.1016/j.actaastro.2015.03.004.
[44] Karelin, A., et al. Detection of a change in the north-south ratio of count rates of particles of high-energy cosmic rays during
a change in the polarity of the magnetic field of the sun. JETP Letters, 101(4):228{231, 2015. doi:10.1134/S0021364015040086.
[45] Karelin, A., et al. Measurement of electron-positron spectrum in high-energy cosmic rays in the pamela experiment.Journal of Physics: Conference Series, 632(1), 2015. doi:10.1088/1742-6596/632/1/012014.
[46] Karelin, A., et al. Measurement of the large-scale anisotropy of cosmic rays in the pamela experiment. JETP Letters,
101(5):295{298, 2015. doi:10.1134/S0021364015050136.
[47] Karelin, A., et al. Measuring the spectra of high-energy cosmic-ray particles in the pamela experiment. Bulletin of the
Russian Academy of Sciences: Physics, 79(3):289{293, 2015. doi:10.3103/S1062873815030260.
[48] Koldobskiy, S., et al. Measuring the albedo deuteron flux in the pamela satellite experiment. Bulletin of the Russian
Academy of Sciences: Physics, 79(3):294{297, 2015. doi:10.3103/S1062873815030326.
[49] Koldobskiy, S., et al. Study of deuteron spectra under radiation belt with pamela instrument. Journal of Physics:
Conference Series, 632(1), 2015. doi:10.1088/1742-6596/632/1/012060.
[50] Larsson, O., et al. Measurements of heavy-ion anisotropy and dose rates in the russian section of the international
space station with the sileye-3/alteino detector. Journal of Physics G: Nuclear and Particle Physics, 42(2), 2015. doi:
10.1088/0954-3899/42/2/025002.
[51] Malakhov, V., et al. Time variations of proton flux in earth inner radiation belt during 23/24 solar cycles based on the
pamela and the arina data. Journal of Physics: Conference Series, 632(1), 2015. doi:10.1088/1742-6596/632/1/012069.
[52] Mikhailov, V., et al. Searching for anisotropy of positrons and electrons in the pamela experiment. Bulletin of the Russian
Academy of Sciences: Physics, 79(3):298{301, 2015. doi:10.3103/S1062873815030375.
[53] Mori, N., et al. Pamela measurements of the boron and carbon spectra. Journal of Physics: Conference Series, 632(1),2015. doi:10.1088/1742-6596/632/1/012017.
[54] Munini, R., et al. Solar modulation of gcr electrons over the 23rd solar minimum with pamela. Journal of Physics:
Conference Series, 632(1), 2015. doi:10.1088/1742-6596/632/1/012073.
[55] Narici, L., et al. Radiation survey in the International Space Station. Journal of Space Weather and Space Climate,
5(27):A37, December 2015. doi:10.1051/swsc/2015037.
[56] Panasyuk, M., et al. The current status of orbital experiments for uhecr studies. Journal of Physics: Conference Series,
632(1), 2015. doi:10.1088/1742-6596/632/1/012097.
[57] Piotrowski, L., et al. On-line and off-line data analysis for the euso-ta experiment. Nuclear Instruments and Methods
in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 773:164{171, 2015.
doi:10.1016/j.nima.2014.08.045.
[58] Piotrowski, L. W., et al. The simulation of the lanfos-h food radiation contamination detector using geant4 package.Computer Physics Communications, 187(0):49 { 54, 2015. ISSN 0010-4655. doi:http://dx.doi.org/10.1016/j.cpc.2014.10.010.
[59] Prieto-Alfonso, H., et al. Radiation hardness assurance for the jem-euso space mission. Reliability Engineering and System
Safety, 133(0):137 { 145, 2015. ISSN 0951-8320. doi:http://dx.doi.org/10.1016/j.ress.2014.08.014.
[60] Usoskin, I. G., et al. Force-field parameterization of the galactic cosmic ray spectrum: Validation for Forbush decreases.Advances in Space Research, 55:2940{2945, June 2015. doi:10.1016/j.asr.2015.03.009.
[61] Adriani, O., et al. Measurement of Boron and Carbon Fluxes in Cosmic Rays with the PAMELA Experiment. ApJ, 791:93,August 2014. doi:10.1088/0004-637X/791/2/93.
[62] Adriani, O., et al. The pamela mission: Heralding a new era in precision cosmic ray physics. Physics Reports, 544(4):323
{ 370, 2014. ISSN 0370-1573. doi:http://dx.doi.org/10.1016/j.physrep.2014.06.003. The PAMELA Mission: Heralding a new era in
precision cosmic ray physics.
[63] Berrilli, F., et al. The relativistic solar particle event of May 17th, 2012 observed on board the International Space
Station. Journal of Space Weather and Space Climate, 4(27):A16, May 2014. doi:10.1051/swsc/2014014.
[64] Bruno, A., et al. Back-tracing and flux reconstruction for solar events with PAMELA. ArXiv e-prints, December 2014.
[65] Di Fino, L., et al. Solar particle event detected by ALTEA on board the International Space Station. The March 7th,
2012 X5.4 flare. Journal of Space Weather and Space Climate, 4(27):A19, May 2014. doi:10.1051/swsc/2014015.
[66] Formato, V., et al. Measurement of hydrogen and helium isotopes flux in galactic cosmic rays with the
PAMELA experiment. Nuclear Instruments and Methods in Physics Research A, 742:273{275, April 2014. doi:
10.1016/j.nima.2013.11.004.
[67] Karelin, A. V., et al. New measurements of the energy spectra of high-energy cosmic-ray protons and helium nuclei with
the calorimeter in the PAMELA experiment. Journal Of Experimental And Theoretical Physics, 119(3):448{452, SEP
2014. ISSN 1063-7761. doi:10.1134/S1063776114080056.
[68] Larsson, O., et al. Relative nuclear abundance from C to Fe and integrated flux inside the Russian part of the ISS with
the Sileye-3/Alteino experiment. Journal of Physics G Nuclear Physics, 41(1):015202, January 2014. doi:10.1088/0954-
3899/41/1/015202.
[69] Martucci, M., et al. Analysis on H spectral shape during the early 2012 SEPs with the PAMELA experiment. Nuclear
Instruments and Methods in Physics Research A, 742:158{161, April 2014. doi:10.1016/j.nima.2013.11.078.
[70] von Ballmoos, P., et al. A balloon-borne prototype for demonstrating the concept of JEM-EUSO. Advances in Space
Research, 53:1544{1550, May 2014. doi:10.1016/j.asr.2013.11.049.
[71] Adams, J. H., et al. An evaluation of the exposure in nadir observation of the JEM-EUSO mission. Astroparticle Physics,
44:76{90, April 2013. doi:10.1016/j.astropartphys.2013.01.008.
[72] Adriani, O., et al. Cosmic-Ray Positron Energy Spectrum Measured by PAMELA. Physical Review Letters, 111(8):081102,August 2013. doi:10.1103/PhysRevLett.111.081102.
[73] Adriani, O., et al. Cosmic-Ray Positron Identification with the PAMELA experiment. ArXiv e-prints, June 2013.
[74] Adriani, O., et al. Measurement of the flux of primary cosmic ray antiprotons with energies of 60 MeV to 350 GeV in
the PAMELA experiment. JETP Letters, 96(10):621{627, JAN 2013. ISSN 0021-3640. doi:10.1134/S002136401222002X.3
[75] Adriani, O., et al. Measurement of the Isotopic Composition of Hydrogen and Helium Nuclei in Cosmic Rays with the
PAMELA Experiment. ApJ, 770:2, June 2013. doi:10.1088/0004-637X/770/1/2.
[76] Adriani, O., et al. Measurements of cosmic-ray proton and helium spectra with the PAMELA calorimeter. Advances in
Space Research, 51:219{226, January 2013. doi:10.1016/j.asr.2012.09.029.
[77] Adriani, O., et al. Time Dependence of the Proton Flux Measured by PAMELA during the 2006 July-2009 December
Solar Minimum. ApJ, 765:91, March 2013. doi:10.1088/0004-637X/765/2/91.
[78] Bazilevskaya, G. A., et al. Solar energetic particle events in 2006-2012 in the PAMELA experiment data. Journal of
Physics Conference Series, 409(1):012188, February 2013. doi:10.1088/1742-6596/409/1/012188.
[79] Bruno, A., et al. Precise Cosmic Rays Measurements With Pamela. Acta Polytechnica, 53:711, 2013.
[80] Bzheumikhova, M. A., et al. Study of solar modulation of galactic cosmic rays with the PAMELA and ARINA spectrometers
in 2006-2012. Journal of Physics Conference Series, 409(1):012194, February 2013. doi:10.1088/1742-6596/409/1/012194.
[81] Campana, D., et al. Search for cosmic ray electron-positron anisotropies with the Pamela data. Journal of Physics
Conference Series, 409(1):012055, February 2013. doi:10.1088/1742-6596/409/1/012055.
[82] Carbone, R., et al. The PAMELA experiment: light-nuclei selection with stand-alone detectors. Journal of Physics
Conference Series, 409(1):012038, February 2013. doi:10.1088/1742-6596/409/1/012038.
[83] Casolino, M. The Pamela Cosmic Ray Space Observatory. International Journal of Modern Physics D, 22:1360002,September 2013. doi:10.1142/S021827181360002X.
[84] Karelin, A. V., et al. A search algorithm for finding Cosmic-Ray anisotropy with the PAMELA calorimeter. Journal of
Physics Conference Series, 409(1):012029, February 2013. doi:10.1088/1742-6596/409/1/012029.
[85] Karelin, A. V., et al. North-south asymmetry for high-energy cosmic-ray electrons measured with the PAMELA
experiment. Journal Of Experimental And Theoretical Physics, 117(2):268{273, AUG 2013. ISSN 1063-7761. doi:
10.1134/S1063776113100129.
[86] Karelin, A. V., et al. Searching for cosmic ray anisotropy using the calorimeter in the PAMELA experiment. Bulletin of
the Russian Academy of Science, Phys., 77:1305{1308, November 2013. doi:10.3103/S1062873813110154.
[87] Koldobskiy, S. A., et al. Galactic deuteron spectrum measured in PAMELA experiment. Journal of Physics Conference
Series, 409(1):012040, February 2013. doi:10.1088/1742-6596/409/1/012040.
[88] Mayorov, A. G., et al. Measurement of antiproton flux in primary cosmic radiation with PAMELA experiment. Journal
of Physics Conference Series, 409(1):012056, February 2013. doi:10.1088/1742-6596/409/1/012056.
[89] Menn, W., et al. The PAMELA space experiment. Advances in Space Research, 51:209{218, January 2013. doi:
10.1016/j.asr.2011.06.030.
[90] Mikhailov, V., et al. Cosmic ray electron and positron spectra measured with PAMELA. Journal of Physics Conference
Series, 409(1):012035, February 2013. doi:10.1088/1742-6596/409/1/012035.
[91] Mikhailov, V. V., et al. Spectra of primary cosmic-ray positrons and electrons in the PAMELA experiment. Bulletin of
the Russian Academy of Science, Phys., 77:1309{1311, November 2013. doi:10.3103/S1062873813110221.
[92] Picozza, P., et al. Cosmic Ray Study with the PAMELA Experiment. Journal of Physics Conference Series, 409(1):012003,February 2013. doi:10.1088/1742-6596/409/1/012003.
[93] Narici, L., et al. Iron flux inside the international space station is measured to be lower than predicted. Radiation
Measurements, 47(10):1030 { 1034, 2012. ISSN 1350-4487. doi:http://dx.doi.org/10.1016/j.radmeas.2012.07.006.
[94] Adriani, O., et al. Cosmic-Ray Electron Flux Measured by the PAMELA Experiment between 1 and 625 GeV. Physical
Review Letters, 106(20):201101, May 2011. doi:10.1103/PhysRevLett.106.201101.
[95] Adriani, O., et al. Observations of the 2006 December 13 and 14 Solar Particle Events in the 80 MeV n-1-3 GeV n-1Range from Space with the PAMELA Detector. ApJ, 742:102, December 2011. doi:10.1088/0004-637X/742/2/102.
[96] Adriani, O., et al. PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra. Science, 332:69{, April 2011.
doi:10.1126/science.1199172.
[97] Adriani, O., et al. The Discovery of Geomagnetically Trapped Cosmic-ray Antiprotons. ApJ, 737:L29, August 2011. doi:
10.1088/2041-8205/737/2/L29.
[98] Borisov, S. V., et al. High-energy cosmic ray proton spectrum. Bulletin Of The Lebedev Physics Institute, 38(3):68{75,MAR 2011. ISSN 1068-3356. doi:10.3103/S1068335611030031.
[99] Casolino, M., et al. Detecting ultra-high energy cosmic rays from space with unprecedented acceptance: objectives
and design of the JEM-EUSO mission. Astrophysics and Space Sciences Transactions, 7:477{482, October 2011. doi:
10.5194/astra-7-477-2011.
[100] Casolino, M., et al. Measurements of He isotopic ratio in cosmic rays in the 100 MeV - 1 GeV range with the PAMELA
experiment. Astrophysics and Space Sciences Transactions, 7:465{469, October 2011. doi:10.5194/astra-7-465-2011.
[101] Casolino, M., et al. PAMELA recent results on galactic proton and helium. Nuclear Physics B Proceedings Supplements,
212:362{367, March 2011. doi:10.1016/j.nuclphysbps.2011.03.049.
[102] de Simone, N., et al. Latitudinal and radial gradients of galactic cosmic ray protons in the inner heliosphere - PAMELA
and Ulysses observations. Astrophysics and Space Sciences Transactions, 7:425{434, September 2011. doi:10.5194/astra-7-
425-2011.
[103] Di Fino, L., et al. Heavy-Ion Anisotropy Measured by ALTEA in the International Space Station. RADIATION
RESEARCH, 176(3):397{406, SEP 2011. ISSN 0033-7587. doi:10.1667/RR2179.1.
[104] Karelin, A. V., et al. Measuring fluxes of the protons and helium nuclei of high-energy cosmic rays. Bulletin of the
Russian Academy of Science, Phys., 75:327{330, March 2011. doi:10.3103/S1062873811030208.
[105] Kawasaki, Y., et al. The focal surface of the JEM-EUSO instrument. Astrophysics and Space Sciences Transactions,
7:167{169, May 2011. doi:10.5194/astra-7-167-2011.
[106] Larosa, M., et al. Ion rates in the International Space Station during the December 2006 Solar Particle Event. Journal
of Physics G Nuclear Physics, 38(9):095102, September 2011. doi:10.1088/0954-3899/38/9/095102.
[107] Mayorov, A. G., et al. The search for antihelium in cosmic rays using data from the PAMELA experiment. Bulletin of
the Russian Academy of Science, Phys., 75:331{333, March 2011. doi:10.3103/S1062873811030282.4
[108] Mayorov, A. G., et al. Upper limit on the antihelium flux in primary cosmic rays. Soviet Journal of Experimental and
Theoretical Physics Letters, 93:628{631, August 2011. doi:10.1134/S0021364011110087.
[109] Mocchiutti, E., et al. PAMELA and electrons. Nuclear Instruments and Methods in Physics Research A, 630:28{35,February 2011. doi:10.1016/j.nima.2010.06.021.
[110] Adriani, O., et al. A statistical procedure for the identification of positrons in the PAMELA experiment. Astroparticle
Physics, 34:1{11, August 2010. doi:10.1016/j.astropartphys.2010.04.007.
[111] Adriani, O., et al. PAMELA Results on the Cosmic-Ray Antiproton Flux from 60 MeV to 180 GeV in Kinetic Energy.Physical Review Letters, 105(12):121101, September 2010. doi:10.1103/PhysRevLett.105.121101.
[112] Borisov, S. V., et al. Measurement of the high-energy electron and positron spectrum in the PAMELA experiment.Bulletin Of The Lebedev Physics Institute, 37(6):184{190, JUN 2010. ISSN 1068-3356. doi:10.3103/S1068335610060096. 3rd
All-Russian Youth School Seminar on Innovative Aspects of Basic Research on Urgent Problems of Physics, Lebedev Phys Inst, Moscow,
RUSSIA, OCT 25-30, 2009.
[113] Casolino, M., et al. 1000 days of PAMELA flight: Results and perspectives. Nuclear instruments & methods in physics
research section a-accelerators spectrometers detectors and associated equipment, 623(1):419{421, NOV 1 2010. ISSN
0168-9002. doi:10.1016/j.nima.2010.03.022. 1st International Conference on Technology and Instrumentation in Particle Physics (TIPP
09), Tsukuba, JAPAN, MAR 12-17, 2009.
[114] Casolino, M. et al. The data acquisition and handling system of JEM-EUSO experiment. Nuclear instruments & methods
in physics research section a-accelerators spectrometers detectors and associated equipment, 623(1):516{518, NOV 1
2010. ISSN 0168-9002. doi:10.1016/j.nima.2010.03.055. 1st International Conference on Technology and Instrumentation in Particle
Physics (TIPP 09), Tsukuba, JAPAN, MAR 12-17, 2009.
[115] Pugliese, M., et al. Tests of shielding effectiveness of Kevlar and Nextel onboard the International Space Station and the
Foton-M3 capsule. Radiation And Environmental Biophysics, 49(3):359{363, AUG 2010. ISSN 0301-634X. doi:10.1007/s00411-
010-0283-3.
[116] Zaconte, V., et al. High energy radiation fluences in the ISS-USLab: Ion discrimination and particle abundances. Radiation
Measurements, 45(2):168{172, FEB 2010. ISSN 1350-4487. doi:10.1016/j.radmeas.2010.01.020.
[117] Zaconte, V., et al. The radiation environment in the ISS-USLab measured by ALTEA: Spectra and relative nuclear
abundances in the polar, equatorial and SAA regions. Advances in Space Research, 46:797{799, September 2010. doi:
10.1016/j.asr.2010.02.032.
[118] Adriani, O., et al. An anomalous positron abundance in cosmic rays with energies 1.5-100GeV. Nature, 458:607{609, April
2009. doi:10.1038/nature07942.
[119] Adriani, O., et al. Measurements of quasi-trapped electron and positron fluxes with PAMELA. In press on Journ.
Geophys. Research, October 2009. doi:DOI:10.1029.
[120] Adriani, O., et al. Measurements of quasi-trapped electron and positron fluxes with PAMELA. Journal Of Geophysical
Research-Space Physics, 114, DEC 29 2009. ISSN 0148-0227. doi:10.1029/2009JA014660.
[121] Adriani, O., et al. New Measurement of the Antiproton-to-Proton Flux Ratio up to 100 GeV in the Cosmic Radiation.Physical Review Letters, 102(5):051101{+, February 2009. doi:10.1103/PhysRevLett.102.051101.
[122] Adriani, O., et al. Positrons and electrons in primary cosmic rays as measured in the PAMELA experiment. Bulletin of
the Russian Academy of Science, Phys., 73:568{570, June 2009. doi:10.3103/S1062873809050104.
[123] Adriani, O., et al. Secondary electron and positron fluxes in the near-Earth space observed in the ARINA and PAMELA
experiments. Bulletin of the Russian Academy of Science, Phys., 73:364{366, April 2009. doi:10.3103/S1062873809030253.
[124] Adriani, O., et al. The PAMELA space mission. Nuclear Physics B Proceedings Supplements, 188:296{298, March 2009.
doi:10.1016/j.nuclphysbps.2009.02.070.
[125] Boezio, M., et al. PAMELA and indirect dark matter searches. New Journal of Physics, 11(10):105023, October 2009.
doi:10.1088/1367-2630/11/10/105023.
[126] Casolino, M. Investigation of radiation environment and Light Flash phenomenon on board manned space stations with
silicon detector telescopes. Nuovo Cimento C Geophysics Space Physics C, 31:77{90, January 2008. doi:10.1393/ncc/i2008-
10282-8.
[127] Casolino, M., et al. Detection of the high energy component of Jovian electrons in Low Earth Orbit with the PAMELA
experiment. Advances in Space Research, 41:168{173, 2008. doi:10.1016/j.asr.2007.07.024.
[128] Casolino, M., et al. Launch and commissioning of the PAMELA experiment on board the Resurs-DK1 satellite. Advances
in Space Research, 41:2064{2070, 2008. doi:10.1016/j.asr.2007.06.062.
[129] Casolino, M., et al. Launch of the space experiment PAMELA. Advances in Space Research, 42:455{466, August 2008.
doi:10.1016/j.asr.2007.07.023.
[130] Casolino, M., et al. Magnetospheric and solar physics observations with the PAMELA experiment. Nuclear Instruments
and Methods in Physics Research A, 588:243{246, April 2008. doi:10.1016/j.nima.2008.01.046.
[131] Casolino, M., et al. The PAMELA experiment: A space-borne observatory for heliospheric phenomena. Advances in
Space Research, 41:2043{2049, 2008. doi:10.1016/j.asr.2007.06.061.
[132] di Felice, V., et al. PAMELA observational capabilities of Jovian electrons. Advances in Space Research, 41:2037{2042,2008. doi:10.1016/j.asr.2007.08.025.
[133] Leonov, A. A., et al. Inner radiation belt source of helium and heavy hydrogen isotopes. Advances in Space Research,
41:86{91, 2008. doi:10.1016/j.asr.2006.09.009.
[134] Papini, P., et al. In-flight performances of the PAMELA satellite experiment. Nuclear Instruments and Methods in
Physics Research A, 588:259{266, April 2008. doi:10.1016/j.nima.2008.01.052.
[135] Pugliese, M., et al. SPADA: A project to study the effectiveness of shielding materials in space. Nuovo Cimento C
Geophysics Space Physics C, 31:91{97, January 2008. doi:10.1393/ncc/i2008-10283-7.
[136] Zaconte, V., et al. ALTEA: The instrument calibration. Nuclear Instruments and Methods in Physics Research B,
266:2070{2078, May 2008. doi:10.1016/j.nimb.2008.02.072.
[137] Adriani, O., et al. The Pamela experiment ready for flight. Nuclear Instruments and Methods in Physics Research A,
572:471{473, March 2007. doi:10.1016/j.nima.2006.10.316.5
[138] Badoni, D., et al. Silicon photomultipliers: On ground characterizations and modelling for use in front-end electronics
aimed to space-borne experiments. Nuclear Instruments and Methods in Physics Research A, 572:402{403, March 2007.
doi:10.1016/j.nima.2006.10.224.
[139] Badoni, D., et al. SiPM: Characterizations, modelling and VLSI front-end dedicated development. Nuovo cimento della
societa italiana di fisica c-geophysics and space physics, 30(5):503{514, SEP-OCT 2007. ISSN 1124-1896. doi:10.1393/ncc/i2008-
10263-y. 1st Workshop on Photon Detection for High Energy Medical Space Applications, Perugia, ITALY, JUN 13-14, 2007.
[140] Casolino, M. Cosmic ray investigations during the Marco Polo and Eneide missions with the Sileye-3/Alteino experiment.Microgravity Science And TechnoloGY, 19(5-6):49{53, 2007. ISSN 0938-0108. Meeting of Science on European Soyuz Missions
to the ISS, Toledo, SPAIN, JUN 27-30, 2006.
[141] Casolino, M. et al. Data processing and distribution in the PAMELA experiment. Nuclear Instruments and Methods in
Physics Research A, 572:351{352, March 2007. doi:10.1016/j.nima.2006.10.312.
[142] Casolino, M., et al. The Altcriss project on board the International Space Station. Advances in Space Research, 40:1746{
1753, 2007. doi:10.1016/j.asr.2007.04.037.
[143] Casolino, M., et al. The PAMELA storage and control unit. Nuclear Instruments and Methods in Physics Research A,
572:349{350, March 2007. doi:10.1016/j.nima.2006.10.310.
[144] Casolino, M., et al. The Sileye Altcriss experiment on board the International Space Station. Nuclear Instruments and
Methods in Physics Research A, 572:235{236, March 2007. doi:10.1016/j.nima.2006.10.311.
[145] Casolino, M., et al. The Sirad experiment on board the International Space Station. Nuclear Instruments and Methods
in Physics Research A, 572:233{234, March 2007. doi:10.1016/j.nima.2006.10.313.
[146] Leonov, A., et al. The measurements of light high-energy ions in NINA-2 experiment. Annales Geophysicae, 25:2029{2036,October 2007.
[147] Picozza, P., et al. PAMELA A payload for antimatter matter exploration and light-nuclei astrophysics. Astroparticle
Physics, 27:296{315, April 2007. doi:10.1016/j.astropartphys.2006.12.002.
[148] Sannita, W., et al. Electrophysiological responses of the mouse retina to 12C ions. Neuroscience Letters, 416:231{235,January 2007.
[149] Sgrigna, V., et al. First data from the EGLE experiment onboard the ISS. Microgravity Science And Technology, 19(5-
6):70{74, 2007. ISSN 0938-0108. Meeting of Science on European Soyuz Missions to the ISS, Toledo, SPAIN, JUN 27-30, 2006.
[150] Spillantini, P., et al. Shielding from cosmic radiation for interplanetary missions: Active and passive methods. Radiation
Measurements, 42(3):14{23, January 2007.
[151] Casolino, M. Observations of the Light Flash phenomenon in space. Advances in Space Research, 38:1177{1181, 2006.
doi:10.1016/j.asr.2005.04.110.
[152] Casolino, M., et al. Cosmic-ray observations of the heliosphere with the PAMELA experiment. Advances in Space
Research, 37:1848{1852, 2006. doi:10.1016/j.asr.2005.06.035.
[153] Casolino, M., et al. Detector response and calibration of the cosmic-ray detector of the Sileye-3/Alteino experiment.Advances in Space Research, 37:1691{1696, 2006. doi:10.1016/j.asr.2005.03.136.
[154] Casolino, M., et al. Relative nuclear abundances inside ISS with Sileye-3/Alteino experiment. Advances in Space Research,
37:1685{1690, 2006. doi:10.1016/j.asr.2006.02.050.
[155] Casolino, M., et al. The PAMELA Storage and Control Unit. Advances in Space Research, 37:1857{1861, 2006. doi:
10.1016/j.asr.2005.06.012.
[156] Casolino, M., et al. YODA++: A proposal for a semi-automatic space mission control. Advances in Space Research,
37:1884{1888, 2006. doi:10.1016/j.asr.2005.06.033.
[157] Fino, L. D., et al. ALTEA data handling. Advances in Space Research, 37:1710{1715, 2006. doi:10.1016/j.asr.2005.01.105.
[158] Scrimaglio, R., et al. Analysis of Sileye-3/Alteino data with a neural network technique: Particle discrimination and
energy reconstruction. Advances in Space Research, 37:1697{1703, 2006. doi:10.1016/j.asr.2005.12.004.
[159] Scrimaglio, R., et al. Simulation of the ALTEA experiment on the International Space Station with the Geant 3.21
program. Advances in Space Research, 37:1770{1776, 2006. doi:10.1016/j.asr.2004.11.029.
[160] Sparvoli, R., et al. Space qualification tests of the PAMELA instrument. Advances in Space Research, 37:1841{1847, 2006.
doi:10.1016/j.asr.2005.05.100.
[161] Zaconte, V., et al. ALTEA: flight model calibration at GSI. Advances in Space Research, 37:1704{1709, 2006. doi:
10.1016/j.asr.2005.02.028.
[162] Casolino, M., et al. Shielding against Cosmic Radiation on Interplanetary Missions. In A. Wilson & B. Elmann-Larsen,
editor, Topical Teams in Life & Physical Sciences: Towards New Research Applications, volume 1281 of ESA Special
Publication, pages 184{199. June 2005.
[163] Leonov, A., et al. Pitch angle distribution of trapped energetic protons and helium isotope nuclei measured along the
Resurs-01 No. 4 LEO satellite. Annales Geophysicae, 23(9):2983{2987, November 2005. ISSN 0992-7689.
[164] Stozhkov, Y. I., et al. About Separation of Hadron and Electromagnetic Cascades in the Pamela Calorimeter. International
Journal of Modern Physics A, 20:6745{6748, 2005. doi:10.1142/S0217751X0502999X.
[165] Boezio, M., et al. The space experiment PAMELA. Nuclear Physics B-Proceedings Supplements, 134:39{46, SEP 2004.
ISSN 0920-5632. doi:10.1016/j.nuclphysbps.2004.08.006. 2nd International Conference on Particle and Fundamental Physics in Space,
Washington, DC, DEC 10-12, 2003.
[166] Bongi, M., et al. PAMELA: A Satellite Experiment for Antiparticles Measurement in Cosmic Rays. IEEE Transactions
on Nuclear Science, 51:854{859, June 2004. doi:10.1109/TNS.2004.829504.
[167] Narici, L., et al. The ALTEA/ALTEINO projects: studying functional effects of microgravity and cosmic radiation.Advances in Space Research, 33:1352{1357, 2004. doi:10.1016/j.asr.2003.09.052.
[168] Papini, P., et al. High-Energy Deuteron Measurement with the CAPRICE98 Experiment. ApJ, 615:259{274, November
2004. doi:10.1086/424027.
[169] Sannita, W. G., et al. Effects of heavy ions on visual function and electrophysiology of rodents: the ALTEA-MICE project.Advances in Space Research, 33:1347{1351, 2004. doi:10.1016/j.asr.2003.11.007.6
[170] Bidoli, V., et al. Isotope composition of secondary hydrogen and helium above the atmosphere measured by the
instruments NINA and NINA-2. Journal of Geophysical Research (Space Physics), 108:1211{+, May 2003. doi:
10.1029/2002JA009684.
[171] Boezio, M., et al. Energy spectra of atmospheric muons measured with the CAPRICE98 balloon experiment. Phys. Rev. D,
67(7):072003{+, April 2003. doi:10.1103/PhysRevD.67.072003.
[172] Boezio, M., et al. The cosmic-ray proton and helium spectra measured with the CAPRICE98 balloon experiment.Astroparticle Physics, 19:583{604, August 2003. doi:10.1016/S0927-6505(02)00267-0.
[173] Casolino, M., et al. Space travel: Dual origins of light flashes seen in space. Nature, 422(6933):680{680, Apr 2003. ISSN
0028-0836. doi:10.1038/422680a.
[174] Casolino, M., et al. Study of the radiation environment on MIR space station with SILEYE-2 experiment. Advances in
Space Research, 31:135{140, 2003. doi:10.1016/S0273-1177(02)00880-3.
[175] Furano, G., et al. The small satellite NINA-MITA to study galactic and solar cosmic rays in low-altitude polar orbit.Advances in Space Research, 31:351{356, 2003. doi:10.1016/S0273-1177(02)00625-7.
[176] Narici, L., et al. ALTEA: Anomalous long term effects in astronauts. A probe on the influence of cosmic radiation and
microgravity on the central nervous system during long flights. Advances in Space Research, 31:141{146, 2003. doi:
10.1016/S0273-1177(02)00881-5.
[177] Adriani, O., et al. The PAMELA experiment on satellite and its capability in cosmic rays measurements. Nuclear
Instruments and Methods in Physics Research A, 478:114{118, February 2002. doi:10.1016/S0168-9002(01)01726-0.
[178] Ambriola, M., et al. High-energy deuteron measurement with the CAPRICE98 experiment. Nuclear Physics BProceedings Supplements, 113:88{94, DEC 2002. ISSN 0920-5632. doi:10.1016/S0920-5632(02)01826-1. 1st International Conference
on Particle and Fundamental Physics in Space, ISOLA ELBA, ITALY, MAY 14-19, 2002.
[179] Avdeev, S., et al. AST-Charge particle spectrometer for radiation measurements onboard International Space Station.Izvestiya Akademii Nauk Seriya Fizicheskaya, 66(11):1670{1672, NOV 2002. ISSN 1026-3489. 27th National Conference on
Cosmic Rays, HAMBURG, GERMANY, AUG, 2001.
[180] Avdeev, S., et al. Eye light flashes on the mir space station. Acta Astronautica, 50:511{525, April 2002.
[181] Bakaldin, A., et al. Geomagnetically trapped light isotopes observed with the detector NINA. Journal of Geophysical
Research (Space Physics), 107:1171{+, August 2002. doi:10.1029/2001JA900172.
[182] Bakaldin, A., et al. Light Isotope Abundances in Solar Energetic Particles Measured by the Space Instrument NINA.
ApJ, 577:513{523, September 2002. doi:10.1086/342128.
[183] Bidoli, V., et al. Energy spectrum of secondary protons above the atmosphere measured by the instruments NINA and
NINA-2. Annales Geophysicae, 20:1693{1697, October 2002.
[184] Casolino, M. Low Energy Solar and Galactic Cosmic Rays at 1 AU. International Journal of Modern Physics A, 17:1685{
1694, 2002. doi:10.1142/S0217751X02011187.
[185] Casolino, M. Radiation in space: Causes, measures and countermeasures. Frascati Physics Series XXIV, XXIV:195{216,2002.
[186] Casolino, M., et al. The sileye-3/alteino experiment for the study of light flashes, radiation environment and astronaut
brain activity on board the international space station. Journ. Rad. Res., 43:S47+{, 2002.
[187] Casolino, M., et al. The Sileye-3/Alteino experiment on board the International Space Station. Nuclear Physics BProceedings Supplements, 113:71{78, DEC 2002. ISSN 0920-5632. doi:10.1016/S0920-5632(02)01824-8. 1st International Conference
on Particle and Fundamental Physics in Space, ISOLA ELBA, ITALY, MAY 14-19, 2002.
[188] Aloisio, A., et al. The ARGO-YBJ experiment in Tibet. Nuovo cimento della societa italiana di fisica c-geophysics and
space physics, 24(4-5):739{744, AUG-OCT 2001. ISSN 1124-1896. Chacaltaya Meeting on Cosmic Ray Physics, LA PZ, BOLIVIA,
JUL 23-27, 2000.
[189] Barbiellini, G., et al. CAPRICE98: a balloon-borne magnetic spectrometer equipped with a gas RICH and a silicon
calorimeter to study cosmic rays. Nuclear Instruments and Methods in Physics Research A, 461:269{271, April 2001.
doi:10.1016/S0168-9002(00)01222-5.
[190] Bergstr¨om, D., et al. Performance of the CAPRICE98 balloon-borne gas-RICH detector. Nuclear Instruments and
Methods in Physics Research A, 463:161{174, May 2001. doi:10.1016/S0168-9002(01)00202-9.
[191] Bidoli, V., et al. Determining the characteristics of cosmic-radiation nuclei in the Sileye experiment on board the
Mir orbital station. Instruments And Experimental Techniques, 44(5):623{625, SEP-OCT 2001. ISSN 0020-4412. doi:
10.1023/A:1012389322155.
[192] Bidoli, V., et al. In-flight performance of SilEye-2 experiment and cosmic ray abundances inside the Mir space station.Journal of Physics G Nuclear Physics, 27:2051{2064, October 2001. doi:10.1088/0954-3899/27/10/307.
[193] Bidoli, V., et al. In-Orbit Performance of the Space Telescope NINA and Galactic Cosmic-Ray Flux Measurements.
ApJS, 132:365{375, February 2001. doi:10.1086/318955.
[194] Boezio, M., et al. Measurements of cosmic-ray electrons and positrons by the Wizard/CAPRICE collaboration. Advances
in Space Research, 27:669{674, 2001. doi:10.1016/S0273-1177(01)00108-9.
[195] Boezio, M., et al. The Cosmic-Ray Antiproton Flux between 3 and 49 GeV. ApJ, 561:787{799, November 2001. doi:
10.1086/323366.
[196] Bonvicini, V., et al. The PAMELA experiment in space. Nuclear Instruments and Methods in Physics Research A,
461:262{268, April 2001. doi:10.1016/S0168-9002(00)01221-3.
[197] Circella, M., et al. Measurements of primary cosmic-ray hydrogen and helium by the WiZard collaboration. Advances
in Space Research, 27:755{760, 2001. doi:10.1016/S0273-1177(01)00117-X.
[198] Narici, L., et al. The altea facility on the international space station. Physica Medica, 17:255+{, 2001.
[199] Sparvoli, R., et al. A solid-state detector as the EPD aboard the Solar Orbiter. In B. Battrick, H. Sawaya-Lacoste, E. Marsch,
V. Martinez Pillet, B. Fleck, & R. Marsden, editor, Solar encounter. Proceedings of the First Solar Orbiter Workshop, volume
493 of ESA Special Publication, pages 371{375. September 2001.
[200] Spillantini, P., et al. Radiation shielding of astronauts in interplanetary flights: the cream surveyor to mars and the
magnetic lens system for a spaceship. Physica Medica, 17:249{254, 2001.7
[201] Bergstr¨om, D., et al. First Mass-resolved Measurement of High-Energy Cosmic-Ray Antiprotons. ApJ, 534:L177{L180, May
2000. doi:10.1086/312665.
[202] Bidoli, V., et al. Study of Cosmic Rays and Light Flashes on Board Space Station MIR: The Sileye Experiment. Advances
in Space Research, 25:2075{2079, 2000. doi:10.1016/S0273-1177(99)01017-0.
[203] Boezio, M., et al. Measurement of the flux of atmospheric muons with the caprice94 apparatus. Phys. Rev. D, 62(3):032007,Jul 2000. doi:10.1103/PhysRevD.62.032007.
[204] Boezio, M., et al. The Cosmic-Ray Electron and Positron Spectra Measured at 1 AU during Solar Minimum Activity.
ApJ, 532:653{669, March 2000. doi:10.1086/308545.
[205] Circella, M., et al. The WiZard Collaboration cosmic ray muon measurements in the atmosphere. Nuclear Physics BProceedings Supplements, 85:355{360, MAY 2000. ISSN 0920-5632. doi:10.1016/S0920-5632(00)00529-6. 6th Topical Seminar on
Neutrino and Astroparticle Physics, PISA, ITALY, MAY 17-21, 1999.
[206] Sparvoli, R., et al. Launch in orbit of the telescope NINA for cosmic ray observations: preliminary results. Nuclear
Physics B-Proceedings Supplements, 85:28{33, MAY 2000. ISSN 0920-5632. doi:10.1016/S0920-5632(00)00478-3. 6th Topical
Seminar on Neutrino and Astroparticle Physics, PISA, ITALY, MAY 17-21, 1999.
[207] Ambriola, M., et al. CAPRICE98: A balloon borne magnetic spectrometer to study cosmic ray antimatter and composition
at different atmospheric depths. Nuclear Physics B-Proceedings Supplements, 78:32{37, AUG 1999. ISSN 0920-5632. doi:
10.1016/S0920-5632(99)00519-8. 6th International Conference on Advanced Technology and Particle Physics, VILLA OLMO, ITALY,
OCT 05-09, 1998.
[208] Bidoli, V., et al. ALTEA: A Facility to Study the Interaction of Brain Functionality and Visual System with Cosmic
Radiation on ISS. In A. Wilson, editor, Utilisation of the International Space station 2, volume 433 of ESA Special
Publication, pages 505{+. February 1999.
[209] Bidoli, V., et al. The space telescope NINA: results of a beam test calibration. Nuclear Instruments and Methods in
Physics Research A, 424:414{424, March 1999. doi:10.1016/S0168-9002(98)01196-6.
[210] Boezio, M., et al. New Measurement of the Flux of Atmospheric Muons. Physical Review Letters, 82:4757{4760, June
1999. doi:10.1103/PhysRevLett.82.4757.
[211] Boezio, M., et al. The Cosmic-Ray Proton and Helium Spectra between 0.4 and 200 GV. ApJ, 518:457{472, June 1999.
doi:10.1086/307251.
[212] Kremer, J., et al. Measurements of Ground-Level Muons at Two Geomagnetic Locations. Physical Review Letters,
83:4241{4244, November 1999. doi:10.1103/PhysRevLett.83.4241.
[213] Bakaldin, A., et al. Experiment NINA: investigation of low energy nuclear fluxes in the near-Earth space. Astroparticle
Physics, 8:109{121, December 1997. doi:10.1016/S0927-6505(97)00047-9.
[214] Barbiellini, G., et al. A fine-grained silicon detector for high-energy gamma-ray astrophysics. Nuovo Cimento C Geophysics
Space Physics C, 20:775{781, October 1997.
[215] Bellotti, R., et al. Study of the combined particle identification capability of a transition radiation detector and a silicon
imaging calorimeter during the TS93 balloon flight. Astroparticle Physics, 7:219{230, August 1997. doi:10.1016/S0927-
6505(97)00027-3.
[216] Bidoli, V., et al. Experimental beam test of the SilEye2 apparatus. Nuclear Instruments and Methods in Physics Research
A, 399:477{488, February 1997. doi:10.1016/S0168-9002(97)00938-8.
[217] Boezio, M., et al. The Cosmic-Ray Antiproton Flux between 0.62 and 3.19 G eV Measured Near Solar Minimum Activity.
ApJ, 487:415{+, September 1997. doi:10.1086/304593.
[218] Casolino, M., et al. Light flash observation in space: Experiment ELFO. Nuovo Cimento D Serie, 19:1601{+, October 1997.
[219] Aversa, F., et al. Identification of cosmic ray electrons and positrons by neural networks. Astroparticle Physics, 5:111{117,August 1996. doi:10.1016/0927-6505(96)00009-6.
[220] Barbiellini, G., et al. Performance of the CAPRICE RICH detector during the 1994 balloon flight. Nuclear Instruments
and Methods in Physics Research A, 371:169{173, February 1996. doi:10.1016/0168-9002(95)01152-8.
[221] Barbiellini, G., et al. The cosmic ray positron to electron ratio in the energy range 0.85 to 14GeV. A&A, 309:L15{L18, May
1996.
[222] Bocciolini, M., et al. The WiZard/CAPRICE silicon-tungsten calorimeter. Nuclear Instruments and Methods in Physics
Research A, 370:403{412, February 1996. doi:10.1016/0168-9002(95)00841-1.
[223] Borisyuk, R., et al. Gamma-ray energy determination using neural network algorithms for an imaging silicon calorimeter.Nuclear Instruments and Methods in Physics Research A, 381:512{516, February 1996. doi:10.1016/S0168-9002(96)00727-9.
[224] Golden, R. L., et al. Measurement of the Positron to Electron Ratio in Cosmic Rays above 5 GeV. ApJ, 457:L103+,February 1996. doi:10.1086/309896.
[225] Aversa, F., et al. WiZard Si-W imaging calorimeter: a preliminary study on its particle identification capability during
a balloon flight in 1993. Nuclear Instruments and Methods in Physics Research A, 360:17{21, February 1995. doi:
10.1016/0168-9002(94)01217-2.
[226] Barbiellini, g., et al. A Wide-Aperture Telescope For High-Energy Gamma-Rays Detection. Nuclear Physics B, (43):253{
256, JUN 1995. ISSN 0550-3213. doi:10.1016/0920-5632(95)00484-Q. Workshop on Trends in Astroparticle Physics, STOCKHOLM,
SWEDEN, SEP 22-25, 1994.
[227] Barbiellini, G., et al. NINA: a lightweight silicon strip detector for cosmic ray research in space. In P. Y. Bely &
J. B. Breckinridge, editor, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 2478 ofSociety of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pages 239{249. June 1995.
[228] Barbiellini, G., et al. The GILDA mission: a new technique for a gamma-ray telescope in the energy range 20 MeV-100 GeV.Nuclear Instruments and Methods in Physics Research A, 354:547{552, February 1995. doi:10.1016/0168-9002(94)01061-7.
[229] Candusso, M., et al. Neural networks with stochastic preprocessing for particle recognition in cosmic ray experiments.Nuclear Instruments and Methods in Physics Research A, 360:371{374, February 1995. doi:10.1016/0168-9002(94)01620-8.
[230] Casolino, M. et al. A cellular automaton to filter events in a high energy physics discrete calorimeter. Nuclear Instruments
and Methods in Physics Research A, 364:516{523, February 1995. doi:10.1016/0168-9002(95)00520-X.8
[231] Basti, G., et al. Using backpropagation to reckon with discrete and continuous signals from a silicon calorimeter. In
S. K. Rogers & D. W. Ruck, editor, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume
2243 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pages 496{507. March 1994.
[232] Basti, G., et al. Automatic redefinition of the fuzzy membership function to deal with high fluctuating phenomena in
neural nets. In D. W. Ruck, editor, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume
1966 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pages 241{254. August 1993.
[233] Bocciolini, m., et al. Silicon Calorimeter For Cosmic Antimatter Search. Nuclear Physics B, (32):77{82, MAY 1993. ISSN
0550-3213. doi:10.1016/0920-5632(93)90011-T. 3rd international conf on advanced technology and particle physics, como, italy, jun
22-26, 1992.9